Responsive image
博碩士論文 etd-0728118-194618 詳細資訊
Title page for etd-0728118-194618
論文名稱
Title
針對異質感測率之無線感測網路下的考量能源效率的路由協定
Energy-efficient Routing Protocol for a Wireless Sensor Network with Diverse Sensing Rates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-15
繳交日期
Date of Submission
2018-08-29
關鍵字
Keywords
叢集式、能量消耗、路由協定、感測速率、無線感測網路
clustering, energy consumption, routing protocol, sensing rate, wireless sensor network
統計
Statistics
本論文已被瀏覽 5665 次,被下載 49
The thesis/dissertation has been browsed 5665 times, has been downloaded 49 times.
中文摘要
能量的節省一直都是無線感測網路的重要議題,許多文獻因此提出基於叢集方式(Cluster-based)的方法以節省感測器的能量消耗,然而,大多數的文獻都僅考慮感測器具有固定且相同的感測速率,事實上,基於應用的需求,感測器間往往存在不同的感測速率(Sensing rate),顯然地,感測速率較高的感測器能量消耗也更快速,但多數方法在選擇叢集頭(Cluster head)的時多半僅以感測器的位置與剩餘能量來作為判斷依據,由於只以當前剩餘能量來做判斷,這些高感測速率的感測器很有可能被選擇作為叢集頭,而加速其能量耗損,進而導致網路壽命的減少;另外,部分文獻假設每個感測器可以直接傳送資料給資料收集器(Sink),然而,能量消耗和傳輸距離有高度正相關,這將進一步損耗感測器的能量。
基於上述的考量,本論文提出一套稱為Energy-efficient routing protocol for sensors with Diverse Sensing Rates (E-DSR)的方法,為了有效率選擇叢集頭,我們選擇以網格(Grid)的方式將網路劃分出多個叢集,並以感測器的位置與剩餘能量之預估加權值來選擇叢集頭,此外,我們也依照感測器與sink的相對位置來差異化感測器的路徑選擇,並且能夠根據其感測資料量的變化來動態改變路由;而為了平衡叢集中感測器的能量消耗,我們亦動態重選叢集頭來平衡叢集頭因代傳資料而造成的能量消耗,實驗結果顯示,我們所提出的E-DSR方法可以有效延長網路壽命,並且能夠降低封包的遺失率。
Abstract
Energy conservation is an important issue in wireless sensor networks. Many studies thus propose cluster-based approaches for packet routing to save energy of sensors. However, most of them assume that sensors have the same (constant) sensing rate. In practice, sensors could have different sensing rates due to application requirement. Obviously, a sensor with a higher sensing rate will consume more energy. However, most methods select cluster heads based on just the position and residual energy of each sensor. In this case, they may select a sensor with a high sensing rate to be the cluster head, which let it quickly exhaust energy. Besides, some studies assume that each sensor can directly send data to the sink. However, the amount of energy consumption on data transmission highly depends on the distance between source and receiver. Thus, these methods would make sensors consume more energy.
Based on the above motivations, this paper proposes an Energy-efficient routing protocol for sensors with Diverse Sensing Rates (E-DSR) method. To efficiently select cluster heads, we divide the network into grids and select each cluster head based on its position and amount of remaining energy. In addition, we also choose different paths for sensors based on their distances to the sink and sensing rates. To balance energy consumption of sensors in a cluster, we adaptively reselect the cluster head. In this way, we can avoid the cluster head spending much energy on relaying packets. Through simulations, we show that our E-DSR method can significantly extend network lifetime and also reduce the packet loss rate.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖次 vii
表次 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 4
1.3 研究貢獻與章節架構 5
第二章 相關文獻探討 6
2.1 平面式路由協定 6
2.2 分層式路由協定 8
第三章 問題定義 12
3.1 網路環境 12
3.2 能量消耗模型 12
3.3 問題定義 13
第四章 研究方法 14
4.1 步驟一 : 網路初始化 14
4.2 步驟二 : 選擇CH 15
4.3 步驟三 : 繞境與封包傳遞 17
4.3.1 路由策略 17
4.3.2 N-Grid程序判斷 18
4.3.3 重選CH判斷 19
4.4 步驟四 : N-Grid程序 19
4.4.1 N-Grid分群功能 19
4.4.2 N-Grid合併功能 20
4.5 E-DSR設計理念 20
第五章 模擬結果與分析 21
5.1 模擬環境與參數設定 21
5.2 E-DSR與現有方法之比較 22
5.2.1 E-DSR與平面路由協定之比較 22
5.2.2 E-DSR與分層路由協定之比較 27
5.3 E-DSR參數對於實驗結果之影響 42
5.3.1 α與β數值之影響 42
5.3.2 Pr數值之影響 43
5.3.3 fullth數值之影響 44
5.3.4 N-Grid程序之影響 46
5.3.5 傳輸成功率之影響 47
第六章 結論與未來研究方向 48
參考文獻 49
參考文獻 References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.
[2] S.C. Hu, Y.C. Wang, C.Y. Huang, and Y.C. Tseng, “Measuring air quality in city areas by vehicular wireless sensor networks,” Journal of Systems and Software, vol. 84, no. 11, pp. 2005-2012, 2011.
[3] Y.C. Wang and C.C. Yang, “3S-cart: a lightweight, interactive sensor-based cart for smart shopping in supermarkets,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6774-6781, 2016.
[4] N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food industry-recent development and future perspective,” Computers and Electronics in Agriculture, vol. 50, no. 1, pp. 1-14, 2006.
[5] A. Pantelopoulos and N.G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 40, no. 1, pp. 1-12, 2010.
[6] J. Lian, K. Naik, and G.B. Agnew, “Data capacity improvement of wireless sensor networks using non-uniform sensor distribution,” International Journal of Distributed Sensor Networks, vol. 2, no. 2, pp. 121-145, 2006.
[7] C.E. Perkins and E.M. Royer, “Ad hoc On Demand Distance Vector Routing Protocol,” Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90-100, 1999.
[8] W.R. Heindelman, A. chandrakasan, and H. Balakrishnan, “Energy-Efficient Communication Protocol for Wireless Microsensor Networks,” Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, vol. 7, pp. 1-10, 2000.
[9] Y.C. Wang and C.T. Wei, “Lightweight, latency-aware routing for data compression in wireless sensor networks with heterogeneous traffics,” Wireless Communications and Mobile Computing, vol. 16, no. 9, pp. 1035-1049, 2016.
[10] Y.C. Wang, “A two-phase dispatch heuristic to schedule the movement of multi-attribute mobile sensors in a hybrid wireless sensor network,” IEEE Transactions on Mobile Computing, vol. 13, no. 4, pp. 709-722, 2014.
[11] A. B. Yagouta, M. Jabberi, and B. B. Gouissem, “Impact of Sink Mobility on Quality of Service Performance and Energy Consumption in Wireless Sensor Network with Cluster Based Routing Protocols,” IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), pp. 1125-1132, 2017.
[12] J.N. Al-Karaki and A.E. Kamal, “Routing techniques in wireless sensor networks: a survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6-28, 2004.
[13] J. Kulik, W.R. Heinzelman, and H. Balakrishnan, “Negotiation-based protocols for disseminating information in wireless sensor networks,” Wireless Networks, vol. 8, pp. 169-185, 2002.
[14] F. Ye, A. Chen, S. Liu, and L. Zhang, “A scalable solution to minimum cost forwarding in large sensor networks,” Proceedings of the tenth International Conference on Computer Communications and Networks (ICCCN), pp. 304-309, 2001
[15] C. Schurgers and M.B. Srivastava, “Energy efficient routing in wireless sensor networks,” Military Communications Conference (MILCOM), pp. 357-361, 2001.
[16] K. Zeng, W. Lou, J. Yang, and D.R. Brown, “On geographic collaborative forwarding in wireless ad hoc and sensor networks,” Wireless Algorithms, Systems and Applications (WASA), pp. 11-18, 2007.
[17] N. Kumar, and Y. Singh, “Trust and packet load balancing based secure opportunistic routing protocol for WSN,” International Conference on Signal Processing, Computing and Control (ISPCC), pp. 463-467, 2017.
[18] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless micro-sensor network models,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 6, no. 2, pp 28-36, 2002.
[19] H. B. Fradj, R. Anane, M. Bouallegue, and R. Bouallegue, “A Range-based Opportunistic Routing Protocol for Wireless Sensor Networks,” International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 770-774, 2017.
[20] R. Singh, S. K. Gupta, and P. Khatri, “Residual Energy Based Multipath Routing Protocol (REBM) in Wireless Sensor Network,” International Conference on Computing, Communication and Automation(ICCCA), pp. 420-426, 2015.
[21] W.B. Heinzelman, “An application-specific protocol architectures for wireless networks,” Ph.D. Dissertation, MIT, Cambridge, 2000.
[22] J. Zhao, and A.T. Erdogan, “A Novel Self-Organizing Hybrid network Protocol for Wireless Sensor Networks,” 1st NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 412– 419, June 2006.
[23] S. Lindsey and C.S. Raghavendra, “PEGASIS: Power-efficient gathering in sensor information systems,” Proceedings, IEEE Aerospace Conference, vol. 3, pp. 1125-1130, 2002
[24] G. Smaragdakis, I. Matta, and A. Bestavros, “SEP: A Stable Election Protocol for clustered heterogeneous wireless sensor networks,” tech. rep., Boston University Computer Science Department, 2004.
[25] Z.A. Eu, H.P. Tan, and W.K.G. Seah, “Routing and Relay Node Placement in Wireless Sensor Networks Powered by Ambient Energy Harvesting,” Wireless Communications and Networking Conference (WCNC), pp. 1–6, IEEE, April 2009.
[26] O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.
[27] Y. Z. Liang, A. L. Zhang, Y. Z. Li, “An Energy-effective Routing Protocol Efficiently Constructs Cluster Topology for WSN,” International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 1098-1100, 2013.
[28] K. V. Praveen Kumar, M. K. Banga, V. Udaya Rani, “EBDRA: Energy balanced dynamic cluster routing approach for WSN,” IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 141-145, 2016.
[29] M. Alnuaimi, K. Shuaib, K. Alnuaimi and M. Abed-Hafez, “Clustering in Wireless Sensor networks Based on Node Ranking,” International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 488-493, 2014.
[30] I. Amundson and X.D. Koutsoukos, “A survey on localization for mobile wireless sensor networks,” Mobile Entity Localization and Tracking in GPS-less Environnments, pp. 235-254, 2009.
[31] Z.M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink mobility for maximizing sensor network lifetime,” IEEE Hawaii International Conference on System Sciences, pp. 1-9, 2005.
[32] R. Vidhyapriya, and P. Vanathi, “Energy Efficient Data Compression in Wireless Sensor Networks,” The International Arab Journal of Information Technology, vol. 6, no. 3, pp. 297-303, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code