Responsive image
博碩士論文 etd-0728118-214918 詳細資訊
Title page for etd-0728118-214918
論文名稱
Title
利用硫酸提取集塵灰中氧化鋁回收之可行性
Feasibility of using sulfuric acid for extraction of aluminum oxide from furnace dust
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-28
關鍵字
Keywords
鋁灰渣、氧化鋁、硫酸、酸浸反應、再利用
aluminum slag, alumina, sulfuric acid, acid leaching reaction, reuse
統計
Statistics
本論文已被瀏覽 5670 次,被下載 3
The thesis/dissertation has been browsed 5670 times, has been downloaded 3 times.
中文摘要
鋁為地殼中含量最多的金屬元素,廣泛被利用於人們的食衣住行。鋁產品在生產過程產生之鋁渣及鋁集塵灰若無經妥善的安定化處理,會造成空氣污染、土壤污染與水源污染等公害,且在鋁渣與鋁集塵灰組成成分中,鋁元素含量佔所有成分比約30~50%,如果將其資源化轉變成原物料再利用,可達到物質全循環、零廢棄之目標。
本研究之鋁灰渣係由國內某再利用廠商提供,利用不同硫酸濃度、鋁灰渣與硫酸的重量比例、硫酸添加量與酸浸反應溫度條件下萃取鋁灰渣之氧化鋁。本研究共測試了六種方法以提升氧化鋁成分比例及回收率。結果顯示,實驗方法一、二、三或四所得之成品中氧化鋁重量百分比比例不高,僅落在8. 43%~14. 59%之間,但成品中皆含有高濃度比例的三氧化硫,成分比例可高達75. 84~85. 61%,推測為鋁灰渣經酸浸反應溶出鋁大部分形成硫酸鋁Al2(SO4)3,燒乾上澄液之溫度並無法去除硫成分;方法五與六成品中氧化鋁成分濃度分別為48. 27%與64. 52%,且較能有效抑制成品中三氧化硫濃度比例,推測原因為高溫煅燒,此流程將部分雜質經高溫反應而去除,進而提高了氧化鋁之成分比例。
本研究鋁的回收率比較結果顯示,方法六將鋁灰渣與硫酸以重量比例1:10(g/g) 之30%硫酸於室溫下進行酸浸反應,後續取得上澄液燒乾所得的氧化鋁經過780℃煅燒2. 5h,所獲得鋁回收率為57. 08%,回收率最高,推測為硫酸與鋁灰渣完全混合,硫酸濃度及酸浸時間較能有效的萃取鋁灰渣中的鋁;方法三將鋁灰渣與1M硫酸以重量比為1g:5mL於400℃進行酸浸反應,後續取得上澄液燒乾所得的氧化鋁回收率最低,僅有12. 63%,推測為硫酸濃度低與添加量不足,且需要更長的酸浸反應時間。
Abstract
Aluminum is the most abundant metallic element in the earth and it is widely used in our daily life. In aluminum manufacture process will produce secondary product like aluminum dregs and dust. It will cause air、water and soil pollution without properly stabilizing treatment. Aluminum contents around 30~50% by weight in the composition of aluminum slag and dust. If we collect aluminum secondary product as raw material for recycle, it can achieve the goal of zero waste and circular economy.
At this research, aluminum slag is providing from aluminum recycling factory. It extract alumina from aluminum slag by different sulfuric acid concentration、weight ratio of aluminum slag and sulfuric acid、sulfuric acid amount and acid leaching reaction temperature. At this research, it applied 6 experiment conditions to improv the returns-ratio and increase the alumina concentration. The experiment No.1~No.4 result indicates the alumina weight percentage of product is above 8.43%~14.59%. The sulfur trioxide (SO3) weight percentage of product is above 75.84~85.61%. It assumed Al2(SO4)3 dissolve after the aluminum slag at acid leaching reaction, the Sulphur element can’t removed after the solution dry out. The experimental No.5 and No.6, the alumina concentration is 48.27% and 64.52%, Both experiments indicate the sulfur trioxide weight percentage can be inhibit by high temperature calcination. This procedure increase the alumina weight percentage due to the impurity remove by calcination.
At experiment N0.6, it mixed the aluminum slag and sulfuric acid by weight ratio 1:10 for acid leaching reaction at room temperature. It collected the clear solution and heating to 780℃ for 2.5hours, Alumina will dissolve and the quantitative analysis result indicated the aluminum return ratio is 57.08%, the return ratio is the highest in these 6 experiments. It assumes the aluminum slag completely mixed with sulfuric acid, aluminum can be extract more efficiency due to sulfuric acid concentration and the acid leaching reaction time. It assumes the aluminum slag completely mixed with sulfuric acid, aluminum can be extract more efficiency due to sulfuric acid concentration and the acid leaching reaction time. The alumina returns-ratio is the lowest and it only reach 12.63%. It assumed this condition need longer acid leaching reaction time due to low sulfuric acid concentration.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1鋁礦提取鋁原料之方法 4
2.1.1 拜耳法(Bayer process) 4
2.1.2 霍爾-赫魯特法(Hall–Héroult process) 5
2.2 鋁製程廢棄物之概述 6
2.2.1 鋁集塵灰來源及成分 6
2.2.2 鋁渣來源及成分 7
2.2.3鋁廢棄物的環境危害 8
2.3 利用鋁灰渣回收氧化鋁之方法 9
2.3.1 酸浸法(Acid leaching process) 9
2.3.1.1 硫酸浸出法(Sulfuric acid leaching process) 10
2.3.1.2 鹽酸浸出法(Hydrochloric acid leaching process) 10
2.3.2 水化學法(Hydro-chemical process) 11
2.3.3 煅燒法(Sintering processes) 11
2.3.3.1 石灰石煅燒法(Limestone sintering process) 11
2.3.3.2 石灰蘇打煅燒法(Lime–soda sintering process) 12
2.3.4新穎技術 13
2.3.4.1 酸鹼組合法(Acid-alkali combination process) 13
2.3.4.2 硫酸銨法(Ammonium sulfate method) 13
2.4 鋁灰渣資源化應用 14
2.4.1 提取金屬鋁或鋁合金 14
2.4.2 生產聚合氯化鋁(PAC) 15
2.4.3 製作低鐵硫酸鋁與明礬 15
2.4.4 製作建設材料與耐火材 16
2.4.5 製作清水磚 17
第三章 研究方法 18
3.1 研究流程 18
3.2 實驗步驟 20
3.2.1 實驗方法一 20
3.2.2實驗方法二 21
3.2.3實驗方法三 22
3.2.4實驗方法四 23
3.2.5實驗方法五 24
3.2.6實驗方法六 25
3.3 實驗藥品與材料 26
3.4 實驗之儀器 27
3.4.1 螢光X光元素分析儀(XRF) 28
3.4.1.1 儀器規格 29
3.4.1.2 分析操作流程與設定 30
3.4.2 環境掃描式電子顯微鏡(ESEM) 31
3.4.3 X光繞射分析儀(XRD) 33
3.4.3 高溫爐 36
3.5 品質保證與品質管理(QA/QC) 38
3.6 氧化鋁回收率計算 40
第四章 結果與討論 41
4.1 鋁灰渣樣品分析 41
4.1.1 鋁灰渣之外觀特徵 41
4.1.2 鋁灰渣之化學組成分析 42
4.1.3 鋁灰渣之ESEM分析 43
4.1.4 鋁灰渣之XRD分析 44
4.2 不同實驗方法之氧化鋁分析 45
4.2.1 化學成分分析 46
4.2.2 氧化鋁之回收率 48
4.2.3 氧化鋁之ESEM分析 49
4.2.4 氧化鋁之XRD分析 54
4.3氧化鋁成分比例及回收率結果比較 57
4.3.1 過濾步驟對氧化鋁回收率與化學組成之影響 62
4.3.2 灰酸比例對氧化鋁回收率與化學組成之影響 63
4.3.3 硫酸濃度對氧化鋁回收率與化學組成之影響 64
4.3.4 硫酸添加量對氧化鋁回收率與化學組成之影響 65
4.3.5 高溫煅燒對氧化鋁回收率與化學組成之影響 66
4.3.6 酸浸溫度對氧化鋁回收率與化學組成之影響 67
第五章 結論與建議 68
5.1 結論 68
5.1 建議 69
參考文獻 71
參考文獻 References
Bai, G., Qiao, Y., Shen, B., & Chen, S. (2011). Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it. Fuel Processing Technology, 92(6), 1213-1219.
Chou, K. S., Kelmm, W. A., Murtha, M. J., & Burnet, G. (1975). Lime-sinter process for production of alumina from fly ash (No. IS-M-64; CONF-760322-1). Ames Lab., Iowa (USA); Iowa State Univ. of Science and Technology, Ames (USA).
Dash, B., Das, B. R., Tripathy, B. C., Bhattacharya, I. N., & Das, S. C. (2008). Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy, 92(1-2), 48-53.
Hansson, K., Olsson, B. A., Olsson, M., Johansson, U., & Kleja, D. B. (2011). Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management, 262(3), 522-530.
J. Ding, S. Ma, S. Shen, Z. Xie, S. Zheng, Y. Zhang, Z. Liu. (2016).Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process, Hydrometallurgy 161, 58-64.
J. Ding, S. Ma, S. Shen, Z. Xie, S. Zheng, Y. Zhang. (2017). Research and industrialization progress of recovering alumina from fly ash: A concise review, Waste Management 60, 375-387.
Kayser, A. (1902). U.S. Patent No. 708,561. Washington, DC: U.S. Patent and Trademark Office.
Li, L. S., Wu, Y. S., Liu, Y. Y., & Zhai, Y. C. (2011). Extraction of alumina from coal fly ash with sulfuric acid leaching method [J]. The Chinese Journal of Process Engineering, 2.
Lu, S., Fang, R. L., & Zhao, H. (2003). Study of recovery of highly pure super-fine powdered aluminum oxide from fly ash by way of lime sintered self powdering. Scientific Study, 1, 15-17.
Lv, Y. L., Chen, C. Y., & Mao, Z. H. (2013). Preparation of alumina from fly ash by sulfuric acid. In Advanced Materials Research (Vol. 734, pp. 1551-1554). Trans Tech Publications.
Meshram, A., & Singh, K. K. (2018). Recovery of valuable products from hazardous aluminum dross: A review. Resources, Conservation and Recycling, 130, 95-108.
Padilla, R., & Sohn, H. Y. (1985). Sodium aluminate leaching and desilication in lime-soda sinter process for alumina from coal wastes. Metallurgical Transactions B, 16(4), 707-713.
Wang, R. C., Zhai, Y. C., Wu, X. W., & Ning, Z. Q. (2014). Extraction of alumina from fly ash by ammonium hydrogen sulfate roasting technology. Transactions of Nonferrous Metals Society of China, 24(5), 1596-1603.
Wu, C. Y., Yu, H. F., & Zhang, H. F. (2012). Extraction of aluminum by pressure acid-leaching method from coal fly ash. Transactions of nonferrous metals society of China, 22(9), 2282-2288.
Xiao, J., Li, F., Zhong, Q., Bao, H., Wang, B., Huang, J., & Zhang, Y. (2015). Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC. Hydrometallurgy, 155, 118-124.
Yao, Z. T., Xia, M. S., Sarker, P. K., & Chen, T. (2014). A review of the alumina recovery from coal fly ash, with a focus in China. Fuel, 120, 74-85.
Zhou, L., Chen, Y. L., Zhang, X. H., Tian, F. M., & Zu, Z. N. (2014). Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds. Materials Letters, 119, 140-142.
王寶慶. (2016). 酸浸取鋁灰製備高純氧化鋁工藝研究 (Master's thesis, 鄭州大學).
以色列科學技術指南網站. https://www.science.co.il/elements/?s=Earth
李曉娜. (2008). 鋁灰製備鎂鋁尖晶石及其在 Al_2O_3-MgAl_2O_4 耐火材料中的應用 (Master's thesis, 上海交通大學).
林麗娟. (1994). X 光繞射原理及其應用. X 光材料分析技術與應用專題.
倪紅軍, 陳祥, 呂帥帥, 魯文凡, & 馮汛. (2015). 鋁渣合成無機材料的研究現狀及進展. 現代化工, 35(11), 0-0.
徐曉虹, 熊碧玲, 吳建鋒, 李鵬, 佘子偉, & 鄧大侃. (2006). 廢鋁灰製備陶瓷清水磚的研究. 武漢理工大學學報, 28(5), 14-16.
袁向紅, & 許曉路. (2000). 煉鋁廢渣的綜合利用試驗. 環境污染與防治, 22(1), 37-39.
國際鋁業協會(International Aluminium Institute, IAI). (2017). Report on the Aluminium Industry’s Global Perfluorocarbon Gases Emissions.
康文通, & 李小雲. (2000). 以鋁灰為原料生產硫酸鋁新工藝. 四川化工與腐蝕控制, 3(5), 17-19.
張文宗. (2003). 鋁渣資源化剩餘物之再利用探討. 成功大學資源工程學系學位論文, 1-86.
梁唯眞. (1997). 鋁錳及其他金屬對蔬菜作物的影響 (Doctoral dissertation, National Taiwan University Department of Plant Pathology and Entomology).
郭菁. (2013). 電解鋁灰鋁渣的回收利用現狀. 材料導報: 納米與新材料專輯, 27(1), 285-289.
陳清齊, 謝國正, 陳志恆, & 翁祖炘. (2012). 鋁渣的安定化與再利用技術開發. 鑛冶: 中國鑛冶工程學會會刊, (220), 111-116.
楊昇府, 王多美, 蔣世傑, 劉雅萍, & 林憲平. (2014). 化煉鋁爐渣為高級耐火材料商業化生產技術開發. 鑛冶: 中國鑛冶工程學會會刊, (228), 93-109.
楊昇府, 王多美, 蔣世傑, 劉雅萍, & 林憲平. (2014). 化煉鋁爐渣為高級耐火材料商業化生產技術開發. 鑛冶: 中國鑛冶工程學會會刊, (228), 93-109.
楊昇府, 葉俊彥, 張彥華, & 蔣世傑. (2011). 煉鋁爐渣為原料製作耐火材料之研究. 鑛冶: 中國鑛冶工程學會會刊, (213), 51-56.
劉文海. (2006). 煉鋁工業發展趨勢. 產業技術知識服務計畫 (金屬工業研究發展中心).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code