Responsive image
博碩士論文 etd-0728119-115913 詳細資訊
Title page for etd-0728119-115913
論文名稱
Title
台灣東南部21.75°N斷面黑潮水、無機碳及營養鹽通量之時空變化
Temporal and spatial variation in water, carbon, and nutrient fluxes of the Kuroshio at 21.75°N southeast of Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-08-16
繳交日期
Date of Submission
2019-08-28
關鍵字
Keywords
PDO、反聖嬰、聖嬰、黑潮、通量、nutrient stream
PDO, La Nina, El Nino, Kuroshio, Flux, nutrient
統計
Statistics
本論文已被瀏覽 5932 次,被下載 111
The thesis/dissertation has been browsed 5932 times, has been downloaded 111 times.
中文摘要
本研究區域位於台灣東南部海域,固定緯度為21.75°N,介於121~124°E之間,而黑潮為流經此斷面之重要西方邊界流。本研究探討了水、標準化無機碳及營養鹽通量在此斷面有何空間及時間之變化,並根據黑潮的特性討論此斷面各項通量變化之可能原因。
就空間尺度而言,比較本研究區域中每一經度間距內的水通量,121~123°E多為北向的流,其中121~122°E佔較大百分比,且在0~1000 m中,0~250 m佔了一半以上的水通量,反映黑潮表水流速快之特性;標準化無機碳之濃度變化不大,所以和水通量相乘後其通量會隨著水通量改變。營養鹽通量和水通量相似之處為121~122°E亦佔121~123°E較大百分比,但由於其濃度對水深的關係為表水低、深水高,使0~250 m的營養鹽通量在0~1000 m佔的比例較水通量低,也因此有其通量核心位於中層水的"nutrient stream"現象,本文並將此現象分為三種型態:型態一為單核心之nutrient stream、型態二為雙核心之nutrient stream、型態三為被向南水流阻隔的兩獨立nutrient stream。
就不同季節而言,比較本研究區域中每一經度間距內的四季平均水通量,121~122°E之季節差異最大,且此經度範圍和121~123°E皆為夏季的平均水通量最大,應是受到北赤道洋流的分歧點南移影響;標準化無機碳通量於時間尺度的變化亦如同空間尺度,隨著水通量改變。營養鹽通量的季節變化和水通量相似,而四個季節的nutrient stream皆以型態二佔最大比例。
將時間尺度放大,以24個月的移動平均值來討論年際間的變化,自2013年開始,0~1000 m之營養鹽通量於本研究區域有大幅上升的趨勢,而水及標準化無機碳通量上升趨勢較緩,推測應是受到0~250 m流速變慢、250~1000 m流速變快影響,但造成此流速改變的原因尚未釐清。若將121~122°E及122~123°E之水通量與大尺度自然現象(聖嬰/反聖嬰現象及太平洋十年期震盪(PDO))比較,聖嬰現象發生時,121~122°E在冬季的水通量明顯最小,反聖嬰現象發生時,121~122°E在夏季的水通量明顯最大,而此時期的水通量於夏、秋、冬三個季節大於聖嬰現象時期,而122~123°E則看不出明顯關係性。當PDO為正相位時期,121~122°E之水通量為夏季大、冬季小,122~123°E之水通量為夏秋兩季較大、春冬兩季較小,但其標準差大;負相位時期,121~122°E於夏季的水通量最大,122~123°E之水通量則季節變化不明顯。
Abstract
This research concerns the Kuroshio across 121~124°E at 21.75°N southeast of Taiwan. The Kuroshio is an important western boundary current and this study focuses on spatial and temporal variations of water, normalized inorganic carbon and nutrient fluxes, as well as reasons behind such variations. It was found that most of the flow between 121~123°E is northward, and the water flow between 121~122°E accounts for a large percentage. In addition, the water flux in the top 250 m is more that 50% of the flux above 1000 m. Between 123~124°E there is only weak net flow.
Since spatial and vertical variabilities of normalized inorganic carbon is small, their fluxes vary according to how water fluxes vary. Similarly, the nutrient fluxes between 121~122°E is larger than those between 122~123°E. On the other hand, since the nutrient concentrations are low in the surface layer where the water flux is high, and that the nutrient concentrations are high in deep layers where the water flux is low, a "nutrient stream" develops at a depth of several hundred meters. The nutrient stream can be divided into three types: namely type one with a single core, type two with two cores separated at 121.6E, and type three with two cores but with a return flow at 121.6E. Type two has the highest fluxes.
Between 121~122°E there are large seasonal variations in terms of fluxes, with the highest fluxes in summer when the bifurcation of the North Pacific Equatorial Current shifts southward. The 24-month moving averages indicate that starting in 2013 the nutrient fluxes have increased significantly, yet the water and normalized inorganic carbon fluxes only increased slightly. This is because the current speed has reduced in the top layer above 250 m yet the speed has increased between 250~1000 m. Further, during the El Nino event, the water flux between 121~122°E is high in summer but seems to be unchanged between 121~123°E. During the warm PDO (Pacific Decadal Oscillation) phase, the water flux between 121~122°E is high in summer but low in winter, and between 121~123°E, the flux is high in summer and fall. During the cold PDO phase, the water flux between 121~122°E is also high in summer although we could not detect a significant correlation between 121~123°E.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
摘要 iv
Abstract vi
目錄 vii
圖目錄 ix
表目錄 xii
第一章、前言 1
1.1 研究區域 1
1.2 文獻回顧 3
1.3 研究目的 7
第二章、研究材料與方法 13
2.1 研究材料 13
2.1.1 資料庫數據 13
2.1.2 實驗室數據 14
2.2 研究方法 15
2.3 擬合結果 16
2.3.1 實驗室數據之擬合 16
2.3.2 HYCOM數據之驗證 16
第三章、水、無機碳及營養鹽通量於不同空間之比較 31
3.1 溫鹽分布 31
3.2 不同經度區域之通量 33
3.2.1 水通量 33
3.2.2 無機碳(NTA及NDIC)之通量 33
3.2.3 營養鹽(N, P, Si)之通量 34
3.3 與前人文獻之比較 37
第四章、水、無機碳及營養鹽通量於不同季節及年際間之變化 66
4.1 四季變化 66
4.1.1 水通量 66
4.1.2 無機碳(NTA、NDIC)通量 68
4.1.3 營養鹽(N、P、Si)通量 68
4.1.4 進入東海陸棚的通量比例 69
4.2 年際變化 71
4.2.1 各項參數通量的年際變化 71
4.2.2 與Nino 3.4 index之比較 72
4.2.3 與PDO之比較 73
第五章、結論 98
參考文獻 101
附錄一、HYCOM數據與實測數據差值 108
附錄二、ADCP流速剖面圖 113


圖目錄
圖 1- 1、西菲律賓海水與南海水交換情況示意圖 8
圖 1- 2、聖嬰、反聖嬰及正常時期月平均海表溫度狀況 9
圖 1- 3、PDO (a)暖相位與(b)冷相位時,典型的冬季海表溫度(色標)、海平面氣壓(等值線)及表面風應力(箭頭)的差異模式 10
圖 1- 4、2009年3月2日於21.8°N, 121.2°E的N濃度、流速及N通量vs深度圖 11
圖 1- 5、1992年5月於21.75°N之N通量vs深度剖面圖 12
圖 2- 1、太平洋十年期震盪指標(PDO index) 17
圖 2- 2、Nino 3.4區位置圖 17
圖 2- 3、Nino 3.4 指標 18
圖 2- 4、HYCOM下載數據之站位 19
圖 2- 5、實驗室數據站位 20
圖 2- 6、實驗室數據中(a)NTA (b)NDIC (c)N (d)P (e)Si與溫度之關係圖 21
圖 2- 7、實測值及擬合值之關係圖 24
圖 2- 8、溫度實測值與HYCOM數據之關係圖 28
圖 3- 1、PR20在121~130°E處以經度劃分之溫鹽曲線 40
圖 3- 2、ORIII-1347 (2009/3) 41
圖 3- 3、型態一(1996/08/01) 45
圖 3- 4、型態二(2018/07/01) 49
圖 3- 5、型態三(2007/07/01) 53
圖 3- 6、2018年年平均海表溫度介於16-19.5°C的範圍 57
圖 3- 7、2018年年平均葉綠素濃度 57
圖 3- 8、三種型態在121~122°E、0~1000 m之N、P及Si平均通量比較圖 58
圖 3- 9、三種型態在121~123°E、0~1000 m之N、P及Si平均通量比較圖 58
圖 3- 10、本研究與前人研究之測線位置圖 59
圖 3- 11、本研究與前人研究之通量比較 60
圖 3- 12、本研究與前人研究每平方公里之通量比較 61
圖 3- 13、Gulf Stream之流域 62
圖 4- 1、四季平均水通量比較圖 75
圖 4- 2、四季的平均水通量在0~250 m間A (121~122°E)、B區(122~123°E)佔A+B區(121~123°E)的百分比 76
圖 4- 3、四季的平均水通量在0~1000 m間A (121~122°E)、B區(122~123°E)佔A+B區(121~123°E)的百分比 76
圖 4- 4、四季平均NTA通量比較圖 77
圖 4- 5、四季平均NDIC通量比較圖 78
圖 4- 6、四季平均N通量比較圖 79
圖 4- 7、四季平均P通量比較圖 80
圖 4- 8、四季平均Si通量比較圖 81
圖 4- 9、1992年10月至2018年11月每個月1日的原始數據,由上至下為水、NTA、NDIC、N、P及Si在0~250 m的通量 82
圖 4- 10、1992年10月至2018年11月每個月1日的原始數據,由上至下為水、NTA、NDIC、N、P及Si在0~1000 m的通量 84
圖 4- 11、1992年10月至2018年11月24個月的移動平均,由上至下為水、NTA、NDIC、N、P及Si在0~250 m的通量 86
圖 4- 12、1992年10月至2018年11月24個月的移動平均,由上至下為水、NTA、NDIC、N、P及Si在0~1000 m的通量 88
圖 4- 13、1992年10月至2018年11月121~123°E及121~122°E 24個月的移動平均,由上至下為水、NTA、NDIC、N、P及Si在0~1000 m的通量 90
圖 4- 14、121~123°E於0~250 m及250~1000 m之24個月的移動平均 (a)水通量 (b)N通量 92
圖 4- 15、PDO index 93
圖 4- 16、聖嬰事件發生時四季之平均水通量 93
圖 4- 17、反聖嬰事件發生時四季之平均水通量 94
圖 4- 18、PDO正相位時期四季之平均水通量 95
圖 4- 19、PDO負相位時期四季之平均水通量 96
附圖 1、HYCOM溫度數據和實測溫度數據差值vs深度圖。 108
附圖 2、HYCOM鹽度數據和實測鹽度數據差值vs深度圖。 109
附圖 3、擬合NTA濃度數據和實測NTA濃度數據差值vs深度圖。 110
附圖 4、擬合NTA濃度數據和實測NTA濃度數據差值vs深度圖。 110
附圖 5、擬合N濃度數據和實測N濃度數據差值vs深度圖。 111
附圖 6、擬合P濃度數據和實測P濃度數據差值vs深度圖。 111
附圖 7、擬合Si濃度數據和實測Si濃度數據差值vs深度圖。 112
附圖 8、ADCP流速vs深度之剖面圖。 113

表目錄
表 2- 1、實驗室數據航次時間表 29
表 2- 2、各化學參數之擬合公式 30

表 3- 1、各經度範圍之水通量平均及百分比,括號內之數字為0~250 m佔0~1000 m水通量的比例 63
表 3- 2、各經度範圍之NTA通量平均及百分比,括號內之數字為0~250 m佔0~1000 m NTA通量的比例 63
表 3- 3、各經度範圍之NDIC通量平均及百分比,括號內之數字為0~250 m佔0~1000 m NDIC通量的比例 63
表 3- 4、各經度範圍之N通量平均及百分比,括號內之數字為0~250 m佔0~1000 m N通量的比例 64
表 3- 5、各經度範圍之P通量平均及百分比,括號內之數字為0~250 m佔0~1000 m P通量的比例 64
表 3- 6、各經度範圍之Si通量平均及百分比,括號內之數字為0~250 m佔0~1000 m Si通量的比例 64
表 3- 7、黑潮各區域及Gulf Stream之營養鹽通量最大值,Nmax為N通量最大值,Pmax為P通量最大值,單位皆為mmol m-2 s-1 65
表 4- 1、四種型態在四季之數量及比例 97
參考文獻 References
中文部份:
王樹倫,1997。西北太平洋邊緣海二氧化碳之研究。國立中山大學海洋地質
及化學研究所博士論文,共226頁。
陳妍君,2013。南海及西菲律賓海水團鋒面在不同時空下之消長。國立中山
大學海洋地質及化學研究所碩士論文,共112頁。
陳鎮東,雷佳,王樹倫,羅建育,王冰潔,2012。海研一號802,海研二號
1312、1349,及海研三號1105、1126、1146、1149、1161航次初步報
告。國立中山大學海洋地質及化學研究所研究報告第40號。
陳鎮東,王樹倫,黃明祥,1996。海研一號403及418B航次初步報告。國立
中山大學海洋地質及化學研究所研究報告第25號。
陳鎮東,王樹倫,王冰潔,林祐邦,李福祥,蕭立銘,陳麗貞,1997。海研
一號433、434及462航次初步報告。國立中山大學海洋地質及化學研究
所研究報告第32號。
陳鎮東,王樹倫,王冰潔,羅立章,許筱薇,2006。海研一號694、695、
713、725,海研二號1139、1180、1182及海研三號896、901、948、983
航次初步報告。國立中山大學海洋地質及化學研究所研究報告第38號。
陳鎮東,黃明祥,王樹倫,1993A。海研一號369及387航次初步報告。國
立中山大學海洋地質及化學研究所研究報告第22號。
陳鎮東,黃明祥,王樹倫,郭景聖,王綺華,1993B。海研一號266、287航
次碳酸鹽數據初步報告。國立中山大學海洋地質及化學研究所研究報告
第14號。
陳鎮東,黃明祥,王樹倫,郭景聖,鄭莉伶,王冰潔,1993C。海研一號
257、262航次初步報告:79年10-11月於菲律賓海。國立中山大學海洋
地質及化學研究所研究報告第13號。
陳鎮東,黃明祥,王樹倫,張雷風,1993D。海研一號316航次碳酸鹽及懸
浮顆粒數據初步報告。國立中山大學海洋地質及化學研究所研究報告第
15號。

英文部份:
Andres, M., Park, J.-H., Wimbush, M., Zhu, X.-H., Nakamura, H., Kim, K., and Chang, K.-I. 2009. Manifestation of the Pacific Decadal Oscillation in the Kuroshio. Geophysical Research Letters, 36.
Centurioni, L. R., Niiler, P. P., and Lee, D.-K. 2004. Observations of inflow of Philippine Sea Surface Water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34: 113–121.
Chao, S.-Y. 1990. Circulation of the East China Sea, a numerical study. Journal of Oceanography, 46: 273–295.
Chao, S.-Y., Shaw, P., and Wu, S. Y. 1996. El nino modulation of the South China Sea circulation. Science, 38: 51–93.
Chen, C.-C., Hsu, S. C., Jan, S., and Gong, G.-C. 2015. Episodic events imposed on the seasonal nutrient dynamics of an upwelling system off northeastern Taiwan. Journal of Marine Systems, 141: 128–135.
Chen, C.-C., Jan, S., Kuo, T.-H., and Li, S.-Y. 2017. Nutrient flux and transport by the Kuroshio east of Taiwan. Journal of Marine Systems, 167: 43–54.
Chen, C.-T. A. 1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta, 19: 523-527.
Chen, C. T. A. and Huang, M. H. 1996. A mid-depth front separating the South China Sea water and the Philippine Sea water. Journal of Oceanography, 52(1): 17-25.
Chen, C.-T. A. and Wang, S.-L. 1998. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. Journal of Geophysical Research: Oceans, 103: 12683–12688.
Chen, C.-T. A. and Wang, S.-L. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Oceanography, 104 (C9): 20675-20686.
Chen, C.-T. A., Liu, C.-T., and Pai, S.-C. 1995a. Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio current. La mer, 33: 161–176.
Chen, C.-T. A., Pai, S.-C., Liu, C.-T., and Wong, G. T. F. 1995b. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Continental Shelf Research, 15: 19–39.
Chen, C.-T. A., Wang, S.-L., and Huang, M.-H. 1996. Carbonate data report for the KEEP-MASS Expedition, 284 pp., Tech. Rep. 27, Inst. of Ma. Geol. and Chem., Natl. Sun Yat-Sen Univ., Kaohsiung, Taiwan.
Chen, C.-T. A., Hou, W.-P., Gamo, T., and Wang, S.-L. 2006. Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Marine Chemistry, 99: 151–161.
Guo, X., Zhu, X. H., Wu, Q. S., and Huang, D. 2012. The Kuroshio nutrient stream and its temporal variation in the East China Sea. Journal of Geophysical Research: Oceans, 117.
Guo, X., Zhu, X. H., Long, Y., and Huang, D. 2013. Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan. Biogeosciences, 10: 6403–6417.
Han, G., and Huang, W. 2008. Pacific Decadal Oscillation and sea level variability in the Bohai, Yellow, and East China Seas. Journal of Physical Oceanography, 38: 2772–2783.
Hsin, Y.-C., Wu, C.-R., and Shaw, P.-T. 2008. Spatial and temporal variations of the Kuroshio east of Taiwan 1982-2005: A numerical study. Journal of Geophysical Research, 113.
Hsin, Y.-C., Qu T., and Wu, C.-R., 2010. Intra-seasonal variation of the Kuroshio southeast of Taiwan and its possible forcing mechanism. Ocean Dynamics, 60(5): 1293-1306.
Hwang, C., Wu, C.-R., and Kao, R. 2004. TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: Kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. Journal of Geophysical Research : Oceans, 109: 1–17.
Ito, T., Kaneko, A., Tsubota, H., and Gohda, N. 1994. The characteristic distribution of silica over th East China Sea Shelf slope, Journal of Oceanography, 50: 465-477.
Jan, S., Yang, Y. J., Wang, J., Mensah, V., Kuo, T.-H., Chiou, M.-D., Chern, C.-S., Chang, M.-H., and Chien, H. 2015. Large variability of the Kuroshio at 23.75N east of Taiwan. Journal of Geophysical Research: Oceans, 120: 1825–1840.
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T., and Yang, Y. 2001. The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31: 1031–1053.
Kashino, Y., España, N., Syamsudin, F., Richards, K. J., Jensen, T., Dutrieux, P., and Ishida, A. 2009. Observations of the North Equatorial Current, Mindanao Current, and Kuroshio current system during the 2006/07 El Niño and 2007/08 La Niña. Journal of Oceanography, 65: 325–333.
Kim, Y. Y., Qu, T., Jensen, T., Miyama, T., Kang, H.W., Mitsudera, H., and Ishida, A. 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. Journal of Geophysical Research, 109(C3).
Liang, W.-D., Tang, T. Y., Yang, Y. J., Ko, M. T., and Chuang, W.-S. 2003. Upper-ocean currents around Taiwan. Deep-Sea Research Part II: Topical Studies in Oceanography, 50: 1085–1105.
Liu, Z., and Gan, J. 2012. Variability of the Kuroshio in the East China Sea derived from satellite altimetry data. Deep-Sea Research Part I: Oceanographic Research Papers, 59: 25–36.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. 1997. A Pacific decadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78: 1069–1080.
Nan, F., Xue, H., Chai, F., Wang, D., Yu, F., Shi, M., Guo, P., and Xiu, P. 2013. Weakening of the Kuroshio Intrusion into the South China Sea over the past two decades. Journal of Climate, 26: 8097–8110.
Nitani, H. 1972. Beginning of the Kuroshio. Kuroshio: Its Physical Aspects, edited by H. Stommel and K.Yoshida. University of Tokyo Press, Tokyo, Japan: 129–163.
Oka, E. 2009. Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. Journal of Oceanography, 65(2): 151-164.
Oka, E., and Kawabe, M. 1998. Characteristics of variations of water properties and density structure around the Kuroshio in the East China Sea. Journal of Oceanography, 54: 605–617.
Oka, E., Suga, T., Sukigara, C., Toyama, K., Shimada, K., and Yoshida, J. 2011. “Eddy resolving” observation of the North Pacific subtropical mode water. Journal of Physical Oceanography, 41(4): 666-681.
Qiu, B., and Lukas, R. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research, 101: 12315–12330.
Qiu, B., and Chen, S. 2009. Interannual variability of the north Pacific Subtropical countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40: 213–225.
Qiu, Y., Li, L., Chen, C.-T. A., Guo, X., and Jing, C. 2011. Currents in the Taiwan Strait as observed by surface drifters. Journal of Oceanography, 67: 395–404.
Qu, T., and Lukas, R. 2003. The bifurcation of the North Equatorial Current in the Pacific*. Journal of Physical Oceanography, 33: 5–18.
Qu, T., Du, Y., Meyers, G., Ishida, A., and Wang, D. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophysical Research Letters, 32: L24609.
Soeyanto, E., Guo, X., Ono, J., and Miyazawa, Y. 2014. Interannual variations of Kuroshio transport in the East China Sea and its relation to the Pacific Decadal Oscillation and mesoscale eddies. Journal of Geophysical Research : Oceans, 119: 3595–3616.
Wang, D., Liu, Q., Huang, R., Du, Y., and Qi, T. 2006. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophysical Research Letters, 33: L14605.
Wong, G. T. F., Pai, S.-C., Liu, K.-K., Liu, C.-T., and Chen, C.-T. A. 1991. Variability of the chemical hydrography at the frontal region between the East China Sea and the Kuroshio north-east of Taiwan. Estuarine, Coastal and Shelf Science, 33: 105–120.
Wu, C.-R., Shaw, P.-T., and Chao, S.-Y. 1999. Assimilating altimetric data into a South China Sea model. Journal of Geophysical Research: Oceans, 104: 29987–30005.
Wu, C.‐R., Hsin, Y.‐C., Chiang, T.‐L., Lin, Y.‐F., and Tsui, I.‐F. 2014. Seasonal and interannual changes of the Kuroshio intrusion onto the East China Sea Shelf. Journal of Geophysical Research: Oceans, 119: 5039– 5051
Wu, C.-R., Wang, Y.-L., Lin, Y.-F., Chiang, T.-L., and Wu, C.-C. 2016. Weakening of the Kuroshio Intrusion into the South China Sea under the global warming hiatus. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9: 5064–5070.
Wu, C.-R., Wang, Y.-L., and Chao, S.-Y. 2019. Disassociation of the Kuroshio Current with the Pacific Decadal Oscillation since 1999. Remote Sensing, 11: 276.
Yan, X., Boyer, T., Trenberth, K., Karl, T. R., Xie, S., Nieves, V., Tung, K., and Roemmich, D. 2016. The global warming hiatus: Slowdown or redistribution? Earth's Future, 4: 472-482.
Yang, Y., and Liu, C.-T. 2003. Uncertainty reduction of estimated geostrophic volume transports with altimeter observations east of Taiwan. Journal of Oceanography, 59: 251-257.
Yang, Y., Liu, C.-T., Hu, J.-H., and Koga, M. 1999. Taiwan Current (Kuroshio) and impinging eddies. Journal of Oceanography, 55: 609–617.
Yaremchuk, M., and Qu, T. 2004. Seasonal variability of the large-scale currents near the coast of the Philippines*. Journal of Physical Oceanography, 34: 844–855.
Zhang, Y., Wallace, J. M., and Battisti, D. S. 1997. ENSO-like interdecadal variability: 1900-93. Journal of Climate, 10: 1004–1020.
Zhang, D., Lee, T. N., Johns, W. E., Liu, C.-T., and Zantopp, R. 2001. The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31: 1054–1074.
Zhao, L., and Guo, X. 2011. Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: A model study. Ocean Science, 7: 27–43.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code