Responsive image
博碩士論文 etd-0729104-165917 詳細資訊
Title page for etd-0729104-165917
論文名稱
Title
河川輸出對高屏海域碳及營養鹽生地化作用之影響
Influences of River Fluxes on Biogeochemical Processes of Carbon and Nutrients in the Kaoping Coastal Zone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-18
繳交日期
Date of Submission
2004-07-29
關鍵字
Keywords
營養鹽、限制、高屏海域
Kaoping Coastal Zone, nutrients, limitation
統計
Statistics
本論文已被瀏覽 5763 次,被下載 2015
The thesis/dissertation has been browsed 5763 times, has been downloaded 2015 times.
中文摘要
本研究在於探討外營力(如氣候、人為影響)的改變所造成高屏溪陸源物質的輸入差異,對於高屏溪口及附近海域碳與營養鹽生地化作用及其預算(budgets)改變之影響。
高屏溪流域豐、枯水期之月流量差約達十二倍之多,隨著流量大小差異,其陸源物質(DOC、POC、DSi、DIN、DIP、TDN及TDP)輸出至高屏海域之通量相差三至十餘倍不等,造成高屏海域碳、營養鹽及其他水文化學參數之季節性分佈差異。高屏海域DOM(dissolved organic matter)、POM(particulate organic matter)及Nutrients表水之季節性空間分佈皆呈現高屏溪口濃度最高,三者之濃度隨離岸距離增加而減少。此外由DOC/TOC及ΔPOC/ΔPN比值分佈亦反應出高流量時陸源物質輸出之影響。由DIN及DIP分佈及比值特徵同時顯示高屏海域透光層水體中浮游植物生長受氮(DIN < 1μM,N/P < 10)所控制之機率大於磷(DIP < 0.2μM,N/P < 30)的限制,但整個海域於觀測期間因季節變化而使得氮限制之機率有所不同,約為4%-42%(冬夏>春秋),受磷限制之機率則微乎其微。
GP(gross production)與DCR(dark community respiration)於春季時為708-19819 mg C m-2d-1及970-6284 mg C m-2d-1、夏季為2451-16230 mg C m-2d-1及861-12418 mg C m-2d-1及冬季為844-5549 mg C m-2d-1及997-5781 mg C m-2d-1。其分佈顯示夏季有高GP與DCR,暗示著可能受高屏溪輸入之大量陸源物質所影響;另由temperature、nutrients與salinity對GP與DCR之間分別呈現顯著正負相關,顯示高屏溪陸源水之注入及水溫的變化可能為調控高屏海域GP與DCR之主要因子。高屏海域夏、冬兩季之BCD(bacterial carbon demand)分別佔GP的15%及64%,暗示GP對於冬季之BCD供應比夏季來得重要。對於GP/DCR比值之季節變化而言,河口測站B1由於全年受高屏溪沖淡水的直接影響,導致於觀測期間其GP/DCR > 1,為自營性系統;A1、C1、B3與B5站之海域則於夏季高屏溪流量大時,受沖淡水的影響大,使得其GP/DCR > 1,為自營性系統;冬季時高屏溪流量減少,除B1站GP/DCR > 1以外,其餘測站GP/DCR 皆小於1,則為異營性系統。整體上看來,高屏海域除冬季時離岸站可能為異營性系統,其餘時期皆為自營性系統。
Abstract
This study aims to understand the influence of external forcing (i.e. climate, human influences) changes on the inputs of terrigenous materials from the Kaoping River as well as the biogeochemical responses of carbon and nutrients to riverine fluxes in the Kaoping coastal zone.
The Kaoping River exhibits contrasting patterns in water discharge and material fluxes between wet and dry seasons. In general, river discharge is about 12 times higher in the wet season than in the dry season. Riverine fluxes of terrigenous materials (DOC、POC、DSi、DIN、DIP、TDN and TDP) are about 3 to 10 times higher in the wet season than in the dry season. Consequently, distribution patterns of carbon, nutrients and hydrochemical parameters are significant difference among four seasons in the Kaoping coastal zone. Distributions of DOM (dissolved organic matter), POM (particulate organic matter) and nutrients in the Kaoping coastal zone show that the highest concentration is generally found in the area close to the Kaoping estuary, and the concentration decreases with the distance away from the land. The riverine fluxes also affect the ratios of DOC/TOC and ΔPOC/ΔPN in the coastal zone. The characteristics of DIN and DIP distributions and their ratios imply that the primary productivity may be largely limited by nitrogen (DIN < 1μM,N/P < 10) rather than phosphorus (DIP < 0.2μM,N/P < 30) in the Kaoping coastal zone. The occurring probability of nitrogen limitation varies from season to season during the study period, roughly ranging from 4% to 42% (winter, summer > spring, autumn).
The GP (gross production) ranges from 708-19819 mg C m-2 d-1 in spring, from 2451-16230 mg C m-2 d-1 in summer, and from 844-5549 mg C m-2 d-1 in winter. The DCR (dark community respiration) ranges from 970-6284 mg C m-2 d-1 in spring, from 861-12418 mg C m-2 d-1 in summer, and from 997-5781 mg C m-2 d-1 in winter. Both GP and DCR display the highest value in summer, indicating the significant influence of terrigenous fluxes on biological production and respiration during summer. Meanwhile, correlations are significantly positive between GP (DCR) and temperature and nutrients, but significantly negative between GP (DCR) and salinity, also indicating the impacts of terrigenous inputs on GP and DCR. In the Kaoping coastal zone, the BCD (bacterial carbon demand) is about 15% GP and 64% GP, respectively, in winter and summer, inplying that the contribution of GP to BCD is more important in winter than in summer. Judging from the ratio of GP/DCR in different seasons and sampling stations, we conclude that the study area near the Kaoping estuary is likely to be autotrophic throughout the study period, the other stations are also likely to be autotrophic during summer. Nevertheless, the offshore stations appear to be heterotrophic during the winter season.
目次 Table of Contents
目 錄
誌謝………………………………………………………………………….I
中文摘要……………………………………………………………...…….II
英文摘要…………………………………………………..……………….III
目錄…………………………………………………………..…………….IV
圖目錄………………………………………………………...…………….V
表目錄……………………………………………………..……………….VI

第一章 緒論………………………………………..……………………….1
第二章 研究區域…………………………………..……………………….4
2-1 研究區域……………………………..……………………….4
第三章 研究材料及方法…………………………..……………………….9
3-1 採樣時期及方法……………..……………………………….9
3-2 實驗方法…………………………...………………………..10
第四章 結果與討論…………………………..………….………………..24
4-1 台灣高屏海域水文環境……………...……………………..24
4-2 高屏溪陸源物質輸出通量之季節性變化……….…………36
4-3 高屏海域營養鹽之分佈、季節性變化及其可能之控制
因子…………………………………………..….…………..41

4-4 總懸浮顆粒物質(TSM)與顆粒有機碳、氮(POC、PN)之分佈及季節變化…………………………..………….…………..54
4-5 溶解有機碳、氮及磷(DOC、DON及DOP)之分佈及季節變化………………………………..………………...…………68
4-6 高屏溪輸出流量對高屏海域碳、氮及磷之影響……..…….83
4-7 高屏海域之粗生產力(Gross production, GP)與群聚呼吸速率(Dark community respiration , DCR)……….……..…..88
4-8 細菌在海洋生態系中所扮演的角色………………..……...99
第五章 結論……………………………………………………..……….110
參考文獻………………………………………………….………………113
中文部分…………………………………………..…………….113
英文部分………………………………………..……………….114
圖目錄
圖2-1、高屏海域採樣站位圖………………………………..………………………….5
圖2-2、(a)高屏溪流域2001~2002年月雨量(歷年平均為1971~2000年之月平均值,資料取自高雄氣象站) (b)里嶺大橋測站之月平均流量(歷年平均為1991~2001年之月平均流量,資料取自經濟部水資源局)……………………………………………….……………………..……….6
圖4-1、研究期間於高屏海域各測站之溫鹽圖……………………………………….25
圖4-2、研究期間於高屏海域各測站表層溫度、鹽度及鹽度極大值之時序變化…..28
圖4-3、研究期間於高屏海域之表層溫度(℃)等值圖……………….…………….29圖4-4、研究期間於高屏海域之表層鹽度等值圖…………………..………………....30
圖4-5、研究期間於高屏海域Transect A 溫度(℃)分佈圖…………….…………..31
圖4-6、研究期間於高屏海域Transect A 鹽度分佈圖………………………………..31
圖4-7、研究期間於高屏海域 Transect B 溫度(℃)分佈圖………………………..32
圖4-8、研究期間於高屏海域 Transect B鹽度分佈圖………………………………..33
圖4-9、研究期間於高屏海域 Transect C 溫度(℃)分佈圖………………………..34
圖4-10、研究期間於高屏海域Transect C 鹽度分佈圖………………………..……..34
圖4-11、研究期間於高屏海域各測站透光層、混和層及層化指數之時序變化…….37
圖4-12、研究期間於高屏海域之表層溶解態矽(DSi)等值分佈圖…………….….42
圖4-13、研究期間於高屏海域之表層溶解態無機氮(DIN)等值分佈圖………….43
圖4-14、研究期間於高屏海域之表層溶解態無機磷(DIP)等值分佈圖…………….44
圖4-15、研究期間於高屏海域 Transect B 之溶解態矽(DSi)分佈圖…………….45
圖4-16、研究期間於高屏海域 Transect B 之溶解態無機氮(DIN)分佈圖………….46
圖4-17、研究期間於高屏海域Transect B 之溶解態無機磷(DIP)分佈圖……….47
圖4-18、高屏海域採樣時期各測站透光層溶解態矽(DSi)、溶解態無機氮(DIN)及磷(DIP)的平均濃度之時序變化………………………………………………..49
圖4-19、高屏海域[DIN]/[DIP]與鹽度之關係圖。( + )表示當DIP < 0.2μM時[DIN]/[DIP]之比值;( □ )表示當DIN < 1μM時[DIN]/[DIP]之比值。(----)為N limitation(N/P < 10)及P limitation(N/P > 30)…………………...51
圖4-20、研究期間於高屏海域透光層DSi/DIN、DSi/DIP及DIN/DIP比值之時序變化………………………………………………………………………………53
圖4-21、研究期間於高屏海域POC/TSM(%)、Chl. a與TSM之關係…….………..56
圖4-22、研究期間於高屏海域之POC/Chl. a、POC與Chl. a之關係……………...57
圖4-23、研究期間於高屏海域之DOC/POC與Chl. a之關係……………….………59
圖4-24、研究期間於高屏海域表層顆粒態有機碳(POC)之分佈圖………….…...60
圖4-25、研究期間於高屏海域表層顆粒態氮(PN)之分佈圖………………………….61
圖4-26、研究期間於高屏海域 Transect B 顆粒態有機碳(POC)分佈圖……..….62
圖4-27、研究期間於高屏海域 Transect B 顆粒態氮(PN)分佈圖…………….….63
圖4-28、研究期間於高屏海域Transect B 總懸浮顆粒物質(TSM)分佈圖…………64
圖4-29、研究期間於高屏海域Transect B透光層Chl. a、總懸浮顆粒物(TSM)、顆粒態有機碳(POC)及氮(PN)積分值之時序變化………………...…………65
圖4-30、研究期間於高屏海域POC與PN之關係(euphotic zone)………….……….66
圖4-31、研究期間於高屏海域POC與PN之關係(aphotic zone)……………..……..67
圖4-32、研究期間於高屏海域表層之溶解態有機碳(DOC)之分佈圖…….……….71
圖4-33、研究期間於高屏海域表層之溶解態有機氮(DON)之分佈圖……………….72
圖4-34、研究期間於高屏海域表層之溶解態有機磷(DOP)分佈圖……………….73
圖4-35、研究期間於高屏海域Transect B之溶解態有機碳(DOC)分佈圖………….74
圖4-36、研究期間於高屏海域Transect B之溶解態有機氮(DON)分佈圖………….75
圖4-37、研究期間於高屏海域 Transect B 之溶解態有機磷(DOP)分佈圖……….76
圖4-38、研究期間於高屏海域DOC與Sigma-T之關係圖…………………………..78
圖4-39、研究期間於高屏海域DOC與Salinity之關係圖………….………………..79
圖4-40、研究期間於高屏海域DOC及DOC/TOC(%)之分佈圖;採樣時期分別為(a)Aug-2001(b)Nov-2001(c)Mar-2002(d)Jul-2002(e)Dec-2002(f)Mar-2003…………….………………………………………….……….80
圖4-41、研究期間於高屏海域各測站透光層溶解態有機碳(DOC)、氮(DON)及磷(DOP)的平均濃度之時序變化………….…………………….……………..82
圖4-42、高屏溪輸出流量對高屏海域各化學參數(DOC、DON、DOP、POC、PN、TSM、Chl. a、DSi、DIN及DIP)平均濃度分佈之影響…………………….85
圖4-43、高屏溪輸出流量與比值對高屏海域DOC/DON、POC/PN及DIN/DIP 之比值分佈圖……………………………………………………………………....87
圖4-44、粗生產力(GP)與群聚呼吸率(DCR)對水文(Temperature、Salinity、PAR、Chl. a、DIN及DIP)之關係圖…………………………………….91
圖4-45、研究期間於高屏海域各測站之藻類物種比例分佈圖(%)……………….94
圖4-46、研究期間於高屏海域Chl. a與Biomass之關係圖………….…………..….95
圖4-47、研究期間於高屏海域各測站透光層之GP、CR及Biomass之積分柱狀圖..97
圖4-48、研究期間於高屏海域GP與DCR之關係………………………………..….98
圖4-49、GP/DCR比值對Temperature、Salinity、Chl. a、DIN及DIP之關係……….100
圖4-50、研究期間高屏海域GP/DCR Ratio於各站位之分佈圖…………………….101
圖4-51、Bacteria production(BP)與鹽度之關係圖………………………………….104
圖4-52、Bacteria production(BP)與Chl.a、NO3-、NH4+及PO43-之關係圖……….106
圖4-53、DOM(DOC、DON及DOP)與BP之關係圖…………………………..….107
表目錄
表3-1、各航次採樣位置及日期……………………………………………….……….19
表4-1、高屏溪陸源物質月輸出通量之粗估(以萬大橋為輸出端點)………..……….39
表4-2、高屏溪POC/PN、POC/PIC、DSi/DIN、DSi/DIP及DIN/DIP輸出率(export ratio)……………………………………….…………………………………..39
表4-3、高屏海域於研究時期DIP<0.2μM、DIN<1μM、P及N limitation zone之百分比………………………………………………………………………..…….52
表4-4、高屏海域顆粒態有機碳、氮(POC、PN)之比值( euphotic zone )…………….69
表4-5、高屏海域顆粒態有機碳、氮(POC、PN)之比值( aphotic zone )………..…….69
表4-6、高屏海域透光層中溶解態無機物(DIM)、溶解態有機物(DOM)與顆粒態有機物(POM)之比值………………….……………………….………….84
表4-7、各航次GP、DCR、Chl.a、Biomass (Avg.)及GP/DCR之數據表………………89
參考文獻 References
中文部份:

王冑、陳慶生(1987)南海北部之暖心渦流(一)對南海暖心渦流之初步觀測。台灣大學海洋學刊,18,104-113頁。
洪佳章、陳茂欽 (1992)東港溪及河口營養鹽(DO、N、P、Si) 之行為研究,中華民國環境保護協會會誌,14-25頁。
洪佩瑩,2001。大鵬灣碳及營養鹽之生地化作用及通量研究。國立中山大學海洋地質及化學研究所碩士論文,共156頁。
吳德泰,1996。高屏峽谷水文特性之調查及研究。中山大學海洋資源研究所碩士論文,共89頁。
黃明祥,1993。呂宋海峽兩側之水團交換及碳酸鹽現況。國立中山大學海洋地質及化學研究所碩士論文。共88頁。
黃俊傑,2001。從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制。中山大學海洋資源研究所碩士論文,共101頁。
楊鈞沂,2001。高屏溪流域陸源物質之剝蝕與傳輸。中山大學海洋地質及化學研究所碩士論文,共127頁。




















英文部份:

Azam, F., 1998. Microbial control of oceanic carbon flux: the plot thickens. Science. 280: 694-696.
Benner, R., S. Opsahl, G.. Chin-Leo, J. E. Richey and B. Forsberg, 1995. Bacterial carbon metabolism in the Amazon River system. Limnol. Oceanogr. 40: 1262-1270.
Benner, R. and S. Opsahl, 2001. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume. Org. Geochem. 32: 597-611.
Benner, R. and M. Storm, 1993. A critical re-evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem., 41: 153-160.
Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21: 347-357.
Carlson, C.A., N. R. Bates, D. A. Hansell and H. W. Ducklow, 1999. Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquat. Microb. Ecol. 19: 229-244.
Chester, R., 1990. Marine Geochemistry, Unwin Hyman LTD., London, pp. 149-188, 273-315.
Chin-Leo, G.. and R. Benner, 1992. Enhanced bacterioplankton production and respiration at inter-mediate salinities in the Mississippi River plume. Mar. Ecol. Prog. Ser. 87: 87-103.
Cho, B. C. and F. Azam, 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature. 332: 441-443.
Cole, J. J., S. Findly and M. L. Pace, 1988. Bacterial production in fresh and saltwaterecosystem: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1-10.
Dortch, Q. and T. E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?. Continental Shelf Research. 12: 1293-1309.
Ducklow, H. W., 1999. The bacterial content of the ocean euphotic zone. FEMS Microbiol Ecol. 30: 1-10.
Ducklow, H. W. and C. A. Carlson, 1992. Oceanic bacterial production. In: Marshall, K.C. Advances in microbial ecology. Plenum Press. New York. p113-181.
Duarte, C. M., S. Agusti, J. Aristegui, N. Gonzalez and R. Anadon, 2001. Evidence for
a heterotrophic subtropical NE Atlantic. Limnol. Oceanogr. 46: 425-428.
del Giorgio, P. A. and J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic
systems. Annu. Rev. Ecolog. Syst. 29: 503-541.
GESAMP, 1987. Land/Sea Boundary Flux of Contaminants. Contributions from Rivers. Report and Studies No. 32. UNESCO, Paries, pp 31-36.
Geider, R. J., 1993. Quantitative phytoplankton physiology: implications for primary production and phytoplankton growth. ICES Marine Science Symposia. 197: 52-62.
Hansell, D. A. and C. A. Carlson, 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature. 395: 263-266.
Hedges, J. I., R. Keil and R. Benner, 1997. What happers to terrestrial organic matter in the ocean? Org. Geochem. 27: 195-212.
Hedges, J. I., G. L. Cowie, J. E. Richey, P. D. Quay, R. Benner and M. Strom, 1994. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceanogr. 39: 743-761.
Hedges, J. I., 1987. Organic matter in sea water. Nature, 330: 205-206.
Holmes, R. M., J. W. McClelland, D. M. Sigman, B. Fry and B. J. Peterson, 1997. Measuring 15N-NH4+ in marine, estuarine and fresh waters: an adaptation of the ammonia method for samples with low ammonium concentrations. Mar. Chem., 10: 99-122.
Hopkinson, C. S., B. Sherr and W. J. Wiebe, 1989. Size fractionate metabolism of coastal microbial plankton. Mar. Ecol. Prog. Ser. 51: 155-166.
Hoppe, H. G., K. Gocke, R. Koppe and C. Begler, 2002. Bacterial growth and primary production along a north-south transect of the Atlantic Ocean. Nature. 416: 168-171.
Huang, B., H. Hong and H. Wong, 1999. Size-fractionated primary productivity and the phytoplankton-bacteria relationship in the Taiwan Strait. Mar. Ecol. Prog. Ser. 183: 29-38.
Hung, J. J. and C. P. Shy, 1995. Speciation of dissolved selenium in Kaoping and Erhjen rivers and estuaries, southwestern Taiwan. Estuaries, 18: 234-240.
Hung, J. J. and P. L. Lin, 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrest. Atmos. Oceanogr., 6: 13-26.
IGBP, 1994. IGBP in action: workplan 1994-1998. IGBP report NO. 28, Stockholm.
IGBP, 1995. LOICZ: Implementation Plan, eds., J. C. Pernetta and J. D. Milliman, IGBP Report No. 33, Stockhlom.
Karl, D. M and G. Tien, 1992. MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol. Oceanogr., 37(1): 105-116.
Labaron, P., P. Servais, M. Troussellier, C. Courties, J. Vives-Rego, G. Muyzer, L. Benard, T. Guindulain, H. Schafer and E. Stackebrandt, 1999. Changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquat. Microb. Ecol. 19:255-267.
Lancelot, C. and G. Billen, 1984. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29: 721-730.
Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Sci., 282: 401-450.
Michaels, A. F., N. R. Bates, K. O. Buesseler, C. A. Carlson and A. H. Knap, 1994. Carbon-cycle imbalances in the Sargasso Sea. Nature. 372: 537-540.
Miller, W. J. and M. A. Moran, 1997. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol. Oceanogr. 42: 1317-1324.
Milliman, J. D. and R. H. Meade, 1983. World-wide delivery of river sediments to the oceans. J. Geol., 91: 1-21.
Murphy, J. and J. P. Riley, 1962. A modified single solution method for determination of phosphate in nature water. Anal. Chem. Acta., 27: 31-36.
Pai, S. C. and C. C. Yang, 1990. Effects of acidity and mollybdate concentration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Anal. Chem. Acta., 229: 115-120.
Pinhassi, J. and K. Hagrstrom, 2000. Seasonal succession of marine bacterioplankton. Aquat. Microb. Ecol. 21(3): 245-256.
Redfield, A. C., B. H. Ketchum and F. A. Richards, 1963. The influence of organisms on the composition of sea water, In: M. H. Hill (ed), The Sea, Interscience, New York, pp. 26-77.
Ridal, J. J. and R. M. Moore, 1990. A re-examination of the measurement of dissolved organic phosphorus in seawater. Mar. Chem., 29: 19-31.
Rivkin, R. and L. Legendre, 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science. 291: 2398-2400.
Robinson, C., P. Serret, G.. Tilstone, E. Teira, M. V. Zubkov, A. P. Rees and E. M. S. Woodward, 2002. Plankton respiration in the Eastern Atlantic Ocean. DEEP-SEA RES I. 49: 787-813.
Rolannd, F. and J. J. Cole, 1999. Regulation of bacterial growth efficiency in large turbid estuary. Aquat. Microb. Ecol. 20:31-38.
Ruttenberg, K. C. and M. A. Go&ntilde;i, 1997. Phosphorus distribution, C:N:P ratios and δ13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology. 139: 123-145.
Salomons, W. and U. Forstner, 1984. Metals in the Hydrocycle, Springer-Verlag, New York, 349 p.
Sanders, R. W. and U. G. Berninger, 1992. Relationships bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14.
Sampou, P. and W. M. Kemp, 2001. Factors regulating plankton community respiration in Chesapeake Bay. Mar. Ecol. Prog. Ser. 110: 249-258.
Schlesinger, W. H., 1991. Biogeochemistry: An Analysis of Global change, Academic Processes, San Diego, 425 p.
Shaw, P. T., 1989. The intrusion of water masses into the sea southwest of Taiwan. J. Geophys. Res., 94: 18213-18226.
Sherr, E. B. and B. F. Sherr, 1996. Temporal offset in oceanic production and respiration processes implied by seasonal changes in atmospheric oxygen: The role of heterophic microbes. Aquat. Micro. Ecol. 11: 91-100.
Shiah, F. K., G. C. Gong, T. Y. Chen and C. C. Chen, 2000a. Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquat. Microb. Ecol. 22: 155-162.
Smith, E. M. and W. M. Kemp, 2001. Size structure and the production/respiration balance in a coastal plankton community. Limnol. Oceanogr. 46: 473-485.
Strickland, J. D. H. and T. R. Parson, 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Boasd Can., 2nd Edn., 167: 311pp.
Thingstad, T. F., M. Perez, S. Pelegri, J. Dolan and F. Rassoulzadegan, 1999. Trophic control of bacterial growth in microcosms containing a natural community from northwest Mediterranean surface waters. Aquat. Microb. Ecol. 18: 145-156.
Touratier, F., L. Lengendre and A. Vezina, 1999. Model of bacterial growth influenced by substrate C:N ratio and concentrations. Aquat. Microb. Ecol. 19: 105-118
Turekian, K. K., 1997. The fate of metal in the oceans. Geochim. Cosmochim. Acta, 41: 1139-1144.
Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem., 10: 109-122.
Vrede, K., 1999. Effects of inorganic nutrients and zooplankton on the growth of bacterioplankton—enclosure experiments in an oligotrophic clear water lake. Aquat. Microb. Ecol. 18(2): 133-134.
Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
Welschmeyer, N. A., 1994. Dluormetric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39(8): 1985-1992.
Weibe, W. J., W. M. Sheldon Jr and L. R. Pomeroy, 1992. Bacterial growth in the cold: Evidence for an enhanced substrate requirement. Appl. Environ. Microbiol. 58: 359-364.
Williams, P. J. L., 1981. Microbial contribution to overall marine plankton metabolism: Direct measures of respiration. Oceanol. Acta. 4: 359-364.
Yu, H. S., C. S. Huang and W. J. Ku, 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta Oceanogr. Taiwanica 28: 19-30.
Yu, H. S., 1993. Contrasting tectonic style of a foredeep with a passive margin: southwest Taiwan and South China. Petrol. Geol. Taiwan 28: 97-118.
Yu, H. S. and T. J. Lee, 1992. Echo character of the shelf-upper slope transition off southwestern Taiwan margin and its relationship to Quaternary sedimentation. Acta Oceanogr. Taiwanica 29: 45-58.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code