Responsive image
博碩士論文 etd-0729104-170331 詳細資訊
Title page for etd-0729104-170331
論文名稱
Title
新超精密球研磨加工機之研磨機制研究
Studies on the Grinding Mechanism of New Ultra-Precision Ball Grinding Machine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-10
繳交日期
Date of Submission
2004-07-29
關鍵字
Keywords
陶瓷球、研磨機制、球研磨加工機、精密球
precision ball, ceramic ball, grinding mechanism, ball grinding machine
統計
Statistics
本論文已被瀏覽 5660 次,被下載 19
The thesis/dissertation has been browsed 5660 times, has been downloaded 19 times.
中文摘要
精密陶瓷滾珠軸承因具有耐熱、耐蝕及耐磨等良好性質,已廣泛被應用於精密機械。傳統滾珠研磨法加工陶瓷材料耗時費力,而磁性流體法雖省時,但成本高。本研究以實驗室所開發之超精密滾珠研磨加工機,來探討主軸轉速、磨粒粒徑、加工負荷、浮環及固定環材質等等加工條件對球研磨特性之影響。尋找此加工機之最佳加工條件,以利往後針對產業界大量生產之需求。
實驗結果發現,當主軸轉速、磨粒粒徑以及加工負荷增加時,真球度與表面粗度收斂至一飽和值之速率與磨除率都會增加,但真球度及表面粗度之飽和值都會較高。而在一定的磨粒粒徑和加工負荷之條件下,磨除率與真球度或者與表面粗度之飽和值呈現正比關係,也就是越低之磨除率有較佳之真球度飽和值及表面粗度飽和值。當浮環及固定環材質為工程塑膠時,真球度及表面粗度之飽和值較鋁為佳,但磨除率較鋁為小。
先以鑽石磨盤直接研磨Al2O3陶瓷球,使平均真球度達到飽和值後,再以添加0.5μm之B4C磨粒於研磨液中,配合銅盤進行球研磨加工,Al2O3陶瓷球之最佳真球度可達0.7μm,表面粗度Ra最佳可達0.1μm。
Abstract
The ceramic ball bearing has been used to exact machine for its good properties such as heat-resistant, corrosion-resisting, and wear-resisting. The old grinding methods of ball bearing spend much time and power. Although the magnetic fluid grinding method economizes time, but cost much money. This study research the effects of spindle speed, grit size, load, and the material of float-ring and fixed-ring on the grinding characteristics by using a new ultra-precision ball grinding machine which developed by our lab. Search the optimum operating conditions of this machine for the requirement of industrial circles.
Experimental results show that the converge rate of the saturated value for the sphericity, surface roughness (Ra), and the removal rate are increased with increasing spindle speed, grit size, or load. The sphericity and surface roughness (Ra) are increased when spindle speed, grit size, or load is increased. The sphericity and surface roughness (Ra) are increased with increasing removal rate in using the same grit size and load. Under a certain operating parameter of grinding process, the mean diameter and removal rate are decreased with increasing grinding time. The sphericity and surface roughness (Ra) are better when using the plastic than the float-ring and fixed ring of aluminum, but its removal rate is lower than aluminum’s.
First, let the average sphericity achieve saturated value by using diamond grind disk to grinding the Al2O3 ceramic ball. Then, the optimum sphericity can achieve 0.7μm and the surface roughness (Ra) can achieve 0.1μm by using the B4C grits of 0.5μm to grinding.
目次 Table of Contents
封面....................................................I
論文授權書............................................. II
論文審定書............................................. III
謝誌................................................... IV
總目錄..................................................V
圖目錄..................................................VII
表目錄..................................................XI
符號說明................................................XII
中文摘要................................................XIV
英文摘要............................................... XV
第一章 緒論..............................................1
1.1 研究動機.............................................1
1.2 文獻回顧.............................................2
1.2.1 鋼球研磨...........................................2
1.2.2 陶瓷球研磨.........................................4
1.3 本文重點.............................................7
1.4 本論文架構...........................................7
第二章 設計原理與理論分析................................9
2.1 球研磨加工介紹......................................11
2.1.1 球原料之球型化過程….....................................................11
2.1.2 磨盤與研磨劑......................................13
2.1.3 傳統盤磨式加工機之相關實驗結論....................15
2.2 磁性流體相關實驗結果分析............................17
2.3 設計原理............................................21
2.3.1 球研磨機之真球度瓶頸現象..........................21
2.3.2 高速滑動研磨機制..................................23
2.3.3 量產需求..........................................24
2.4 磨盤模式之運動分析..................................26
2.5 研磨加工機制........................................32
2.5.1 研磨(grinding)....................................32
2.5.2 拋光(polishing)...................................33
第三章 實驗設備及實驗方法...............................34
3.1 實驗設備及量測儀器..................................34
3.1.1 超精密球研磨加工機................................34
3.1.2 量測儀器..........................................41
3.2 實驗條件............................................42
3.3 加工方法............................................43
3.4 實驗步驟............................................46
第四章 實驗結果與實驗討論...............................53
4.1 鋼球研磨............................................53
4.1.1 主軸轉速對研磨特性之影響..........................54
4.1.2 磨粒粒徑對研磨特性之影響..........................67
4.2 陶瓷球研磨..........................................76
4.2.1 研磨負荷對研磨特性之影響..........................76
4.2.2 浮環及固定環材質對研磨特性之影響..................87
4.2.3 以二體及三體研磨陶瓷球之實驗結果..................93
第五章 結論............................................108
參考文獻................................................109
參考文獻 References
[1]稻垣耕司,阿部紀一,”Evaluation of performance of minute sphere grinders prepared for trial”,東北大學科學計測研究所報告,第25卷(1976),第1號49-65。
[2]井戶守,羽地務,”ミニアチュア玉軸受”,日刊工業新聞社,(1961)
[3]糸魚川文廣,中村隆,船橋鉀一,”V溝ラップを用いた鋼球ьラッピングの構”,日本機械學會論文集(C編),第59卷(1993),第562號,304-310。
[4]後藤賢治,水木洋,”超精密軸受用鋼球のラッピングシステムに關する研究”,精密工學會誌,Vol.62,(1996),No.5,661-685。
[5]梅原德次,加藤康司,”A study on mangetic fluid grinding – 1st report”,Trans . JSME, Vol 54,(1998),1599-1604 (日文)。
[6]N. Umehara and K. Kato,”Principles of magnetic fluid grinding of ceramic balls”,Applied Electromagnetics in Materials 1,(1990),37-43。
[7]加藤康司,張波,梅原德次,T. H. C. Childs,D. A. Jones,S. Mahmood,”Kinematics of balls in magnetic fluid grinding “ 日本機械學會論文集(C編),第60卷,(1994),第572號,1433-1439
[8]梅原德次,加藤康司,竹腰正雄,”セラミック球の磁性流體研磨之基本特性に及了ぼす浮子の支持剛性と加工荷重の影響”,日本機械學會論文集(C編),第61卷(1995),第584號,1709-1714。
[9]T. H. C. Childs, S. Mahmood, H. J. Yoon, “magnetic fluid grinding of ceramic balls”, Tribology International, Vol.28(1995), NO.6, 341-348
[10]T. H. C. Childs, S. Mahmood, H. J. Yoon, “The material removal mechanism in magnetic fluid grinding of ceramic ball bearings,” Journal of Engineering Manufacture, Vol.208(1994), NOB1, 47-59.
[11]T. H. C. Childs, S. Mahmood, H. J. Yoon, “Ceramic ball finishing by magnetic fluid grinding”, Advanced Ceramics for Structural and Tribological Applications(1995), 377-387.
[12]梅原德次,”磁性流體研磨”,トライボロジスト”,第41卷(1996), 第6號,476-481。
[13]Komanduri, Umehara, Raghunandan, “On the possibility of chemo-mechanical action in magnetic float polishing of silicon nitride”, Journal of Tribology, Vol.118(1996), 721-727.
[14]Bhagavatula, Komanduri, “On chemomechanical polishing of Si3N4 with Cr2O3 “, Philosophical Magazine A, Vol.74(1996), No.4, 1003-1017.
[15]張波,梅原德次,加藤康司,”ЙьтШヱ球ソ磁性流體研磨ソ研究”,精密工學會誌,Vol.61(1995), No.4, 586-590。
[16]張波,中島晃,”Si3N4ЙьтШヱ球ソ高能率•超精密研削”,日本Ььユп口Жみ學會Ььユп口Жみ會議予稿(1997),349-351。
[17]F. Y. Chang, T. H. C. Childs, “Non-magnetic fluid grinding”, Wear, Vol.233(1998), 7-12.
[18]黑部利次,角田久野,小野田誠,”回轉Зз⑦制御形球研磨法ソ開發,第一報:加工原理シ研磨裝置,第二報:窒化ンユ素球ソьШз⑦ヲ”,日本精密工學會春季學術研討會論文集(1990),257-260。
[19]黑部利次,角田久野,小野田誠,”回轉Зз⑦制御形球研磨法ソ開發,第三報:窒化ンユ素球ソпベЁ⑦ヲ”,日本精密工學會秋季學術研討會論文集(1990),637-638。
[20]市川茂樹,小奈弘,吉本勇,”ヤютШヱЗп-юソьШз⑦ヲ”,日本精密工學會秋季大會學術講演會講演論文集(1991),215-216。”

[21]東芝生產技術研究所,”超精密ЙьтШ③З球ソ研磨法,定盤メ磁フザ浮上イオ偏荷重メ吸收”,Nikkei mechanical (1991),90-91。
[22]M. Jiang,R. Komanduri,”On the finishing of Si3N4 balls for bearing applications”,Wear,Vol.215(1998),267-278.
[23]M. Jiang,Nelson O. Wood,R. Komanduri,”On chemo-mechanical polishing (CMP) of silicon nitride(Si3N4) workmaterial with various abrasives”, Wear,Vol.220(1998),59-71.
[24]J.L. Yuan,B.H. Lü,X. Lin,L.B. Zhang,S.M. Ji,”Research on abrasives in the chemical-mechanical polishing process for silicon nnnitrid balls”,Journal of Materials Processing Technology,Vol.129(2002),171-175.
[25]B. Zhang,A. Nakajima,”Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation”,Precision Engineering,Vol.27(2003),1-8.
[26]宋俍宏,”新超精密球加工機之試作”,國立中山大學機械所碩士論文(1998)。
[27]中山泰喜,”流體ソ力學”(1989),141-142。
[28]B. J. Hamrock,”Fundamentals of Fluid Film Lubrication”(1994),128-130。
[29]JSME Mechanical Engineering Handbook, 7(1977), 195(In Japanese)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.235.196
論文開放下載的時間是 校外不公開

Your IP address is 3.15.235.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code