Responsive image
博碩士論文 etd-0729105-111020 詳細資訊
Title page for etd-0729105-111020
論文名稱
Title
探討利用摩擦攪拌製備之奈米氧化鋯/5083鋁合金複材對機械性質影響之研究
Studies of Mechanical Properties of Nanoscaled ZrO2 Particulate Reinforced 5083 Alloy using Friction Stir Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-19
繳交日期
Date of Submission
2005-07-29
關鍵字
Keywords
摩擦攪拌製程
friction stir process
統計
Statistics
本論文已被瀏覽 5649 次,被下載 23
The thesis/dissertation has been browsed 5649 times, has been downloaded 23 times.
中文摘要
本實驗利用摩擦攪拌的製成方式,製作奈米氧化鋯鋁基複合材料,已成功製作出不同重量百分比氧化鋯鋁基複合材料,且分析結果顯示強化顆粒皆均勻分散在鋁基材中。由X-ray 繞涉分析結果發現氧化鋯與鋁基材經五道摩擦攪拌製程;於最高溫度505゚C的環境下,會反應產生Al3Zr、Al2O3的反應物,且鋁基複合材料中的Al3Zr皆為tetragonal D023 結構。5083 鋁合金經摩擦攪拌後,晶粒尺寸有明顯的被細化(約2.6 μm),且隨複材中添加氧化鋯含量的增加;鋁晶粒尺寸有越來越小的趨勢,當含氧化鋯粉量達15.3 wt% 時鋁晶粒約細化為0.66 μm。
機械性質方面,添加氧化鋯顆粒能有效的強化鋁基材,當氧化鋯含量為15.3 wt%時硬度提升為158Hv,此值幾乎為母材5083 鋁合金硬度的兩倍。而降伏強度由125 MPa(母材)增強至400 MPa(Zr 15.3 wt% ),雖然氧化鋯的添入能有效的強化基材,但相對的會降低材料的延展性。
Abstract
We applied the Friction-Stir Process (FSP) to make the ZrO2 /5083 Al
alloy composite material, and analyzed its physical properties in different aspects. Different weight percents of nanometer composite materials, ZrO2/Al, with well distributed strengthening grains were manufactured with the FSP which was used for five runs on ZrO2 along with the matrix material, aluminum, at 505°C, and created reactants of Al3Zr, tetragonal D023 structure, and Al2O3, identified with X-ray diffraction analysis.
The grain size of 5083 Al-alloy could be finer, around 2.6μm, by the FSP. This study suggests that increasing the addition of ZrO2 into the Al matrix could make the grain size of aluminum finer. We found that the Al grain size would be able to down to 0.66μm, as 15.3 wt% of ZrO2 powder was reached.
The mechanical properties of the Al-matrix material could be also modified by adding ZrO2 that reduces the ductility but boosts the strength of the matrix material. When we put 15.3 wt% of ZrO2 powder, 5083 Al-alloy attained the hardness of 158Hv, almost twice of hardness of the original alloy material, and its yield strength also increased from 125MPa to 400MPa as well.
目次 Table of Contents
論文摘要…………………………………………………………Ⅰ
目錄………………………………………………………………Ⅲ
表目錄……………………………………………………………Ⅶ
圖目錄……………………………………………………………Ⅷ
第一章 前言……………………………………………………1
弟二章 文獻回顧………………………………………………3
2.1 摩擦攪拌銲接(FSW)…………………………………… 3
2.1.1 摩擦攪拌銲接原理…………………………………… 3
2.1.2 FSW銲道的形成機構……………………………………5
2.1.3 銲道區之微觀組織……………………………………10
2.2 銲道攪拌區之動態再結晶機構…………………………12
2.3 第二相顆粒對再結晶的影響……………………………15
2.4 摩擦攪拌製程……………………………………………18
2.5 金屬基複材成形法………………………………………18
2.6 FSP在金屬基複合材料上的應用……………………… 23
2.7 鋁合金的析出強化………………………………………24
2.8 鋁基複合材料的強化機構………………………………25
2.8.1 淬火強化………………………………………………25
2.8.2 Orowan 強化和散佈強化…………………………… 27
2.8.3 晶粒強化………………………………………………27
2.8.4 微結構強化……………………………………………28
2.8.5 加工硬化………………………………………………28
2.9 金屬基複合材料的破壞型態……………………………29
2.10 介金屬化合Al3Zr …………………………………… 31
2.11 研究動機……………………………………………… 32
第三章 實驗方法…………………………………………… 36
3.1 實驗材料與處理程序……………………………………36
3.1.1 5083Al板材的製備……………………………………36
3.1.2 氧化鋯奈米陶瓷粉末的處理…………………………37
3.2 摩擦攪拌製程……………………………………………42
3.2.1 摩擦攪拌製程機操作參數……………………………42
3.2.2 工具頭和夾具…………………………………………45
3.2.3 填加氧化鋯陶瓷粉末的方法…………………………47
3.3 機械性質測試……………………………………………50
3.3.1 微硬度試驗……………………………………………50
3.3.2 拉伸與壓縮試驗………………………………………51
3.4 顯微結構的觀察…………………………………………53
3.4.1 掃描示電子顯微鏡之觀察……………………………53
3.4.2 穿透式電子顯微鏡之觀察……………………………53
3.5 X光繞射分析…………………………………………… 54
第四章 實驗結果…………………………………………… 55
4.1 製程中工具頭磨耗現象…………………………………55
4.2 鋁基複合材料中鋯的含量分析…………………………57
4.2.1 氧化鋯理論含量值……………………………………57
4.2.2 EDS定量分析………………………………………… 59
4.3 摩擦攪拌製程的溫度量測………………………………62
4.4 X-ray繞射分析…………………………………………64
4.5 微觀結構分析……………………………………………67
4.5.1 掃描式電子顯微鏡SEM分析………………………… 67
4.5.2 EDS Mapping 分析……………………………………70
4.5.3 穿透式電子顯微鏡TEM 分析…………………………73
4.6 機械性質測試結果………………………………………81
4.6.1 鋁基複合材料的微硬度測試…………………………81
4.6.2 拉伸與壓縮試驗………………………………………83
4.7 鋁基複合材料破斷面觀察………………………………88
第五章 結果討論…………………………………………… 96
5.1 工具頭磨耗問題…………………………………………96
5.2 晶粒細化機制……………………………………………96
5.3 鋁基複材中細小顆粒的形成機構………………………98
5.4 摩擦攪拌製程對材料硬度的影響………………………99
5.5 強化機構的探討……………………………………… 100
5.6 拉伸破壞方式………………………………………… 107
第六章 結論…………………………………………………108
參考文獻………………………………………………………109
參考文獻 References
1. M. Taya, R.J. Arsenault , Metal Matrix Composites Thermomechanical Behavior ,21, (1989),349.
2. S. J. Hong, P. W. Kao, and C. P. Chang, Materials Science and Engineering , A158,(1992) ,195.
3. C. Ponzi , Composites Manufacturing , 3, No.4 , (1992) ,32.
4. M. J. Koczak and M. K. Premkumar, JOM, January(1993), 44.
5. Y. Flom and R. J. Arsenault, Acta Metall., 37,(1989),2413.
6. J. K. Shang, W. Yu and R. O. Ritchie, Mater. Sci. Eng. A102, (1988),181.
7. J. K. Shang, and R. O. Ritchie, Acta Metall., 37, (1989),2267.
8. M. Manoharan and J. J. Lewandowski, Acta Metall. Mater., 38, (1990),489.
9. C. W. Nan and D. R. Clark, Acta Metall., 42,(1994),69.
10. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr and A.C. Nunes, Mater.Characterization 49 ,(2003),95.
11. A.P. Reynold, W.D. Lockwood and T.U. Seidel, Mater. Sci. Forum 331-337,(2000) ,1719.
12. Ying Li, L.E. Murr and J.C. McClure, Mater. Sci. Eng. A 271 ,(1999) , 213.
13. P.A.Oegoetz,Boeing,U.S.Patent No.08/908,405,(2002)
14. Ying Li, L.E. Murr and J.C. McClure, Mater. Sci. Eng. A 271 ,(1999) , 213.
15. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr and A.C. Nunes, Mater.Characterization 49, (2003) ,95.
16. W.B. Lee, Y.M. Yeon, S.B. Jung and Scripta Mater. 49, (2003) ,423.
17. 陳志鵬、曾天佑、何扭今, 中華民國銲接協會92 年論文發表研討會,2003.
18. Biallas,et al.,First International Conference on Friction Stir Welds,Thousand Oaks,CA,(1999).
19. K.N.Krishnan,Materials Science and Engineering,A327, (2002),246-251.
20. 陳志鵬、曾天佑、何扭今,中華民國銲接協會92 年論文發表研討會, 2003.
21. M. Manoharan and J. J. Lewandowski, Acta Metall. Mater., 38, (1990),489.
22. J.A. Esparza, W.C. Davis, E.A. Trillo and L.E. Murr, J. Mater, Sci. Lett. 21,(2002),917.
23. S. Juttner, Weld. Met. Fabr. 66, (1998) ,11.
24. K.V. Jata and S.L. Semiatin, Scripta Mater. 43, (2000) ,743.
25. J.Q. Su, T.W. Nelson, R. Mishra and M. Mahoney, Acta Mater. 51, (2003), 713.
26. Y.S. Sato, Mitsunori Urata and H. Kokawa, Metall. Mater. Trans. 33A, (2002),625.
27. 王木琴, 工程材料, 復文, 台南市, (1996),362.
28. M.Ferry and P.R.Munroe,Scripta Mater,33,No.6,(1995),857-862.
29. H.Miura,T.Sakai,A.Belyakov,G.Gottatein,J.Verhasselt and M.Crumbach , Acta Metall., 51, No.6,(2003), 1507-1515.
30. H.Yamagata,Y.Ohuchida,N.Sato and M.Otsuka, Scripta Mater., 45, No.7,(2001),1055-1061.
31. F.J.Humphreys and M.Hatherly, Scripta Mater. 42, (2000), 163.
32. K.N.Krishnan,Materials Science and Engineering,A327, (2002),246-251.
33. Z.Y. Ma, R.S. Mishra and M.W. Mahoney, Acta Mater. 50, (2002) ,4419.
34. 日本複合材料學會,表面技術雜誌,第116期,136-144.
35. Jacques E.Schoutens Kamnan Tempo,Introduction to Metal Matrix Composite Materials,(1982),5-1~35.
36. Franck A.Girot,J.M.Quenisset and R.Naslain,Composites Science and Technology,30,(1987),155-184.
37. R.S. Mishra, Z.Y. Ma and I. Charit, Mater. Sci. Eng. A 341 (2003) 307.
38. P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton and M.W. Mahoney,Scripta Mater. 44, (2001) ,61.
39. W.S.Miller and F.J.Humphreys,Scripta Metallurgical , 25, (1991) ,33-38.
40. R.J.Arsenault and N.Shi,Materials Science and Engiveering, 81, (1986) ,175.
41. M.Taya and K.E.Ludy,Acta Metallurgical,39,(1991),73.
42. R.J.Arsenault,Scripta Metallurgical,25,(1991),2617.
43. S.V.Kamat,A.D.Rollett and J.P.Hirth,Scripta Metallurgical, 25,(1991) ,27.
44. D.Altenpohl,Aluminum, 37,(1961),401.
45. A.F.Whitehouse and T.W.Clyne,Acta Metall.Mater.41,(1993),1701.
46. M.Kouzeli,L.Weber,C.San Marchi and A.Mortensen,Acta Mater, 49,(2001),497.
47. M.J.Hadianfard,J.Healy and Y.W.Mai,Jour.of Mater.Sci, 29,(1994) ,2321.
48. T.H.Courtney,”Mechanical Behavior of Materials”,(1990),502.
49. R.E.Smallman,”Modern Physical Metallurgy”,(1985),493.
50. R.A.Jeniski,Mater.Sci.and Eng.,A237,(1977),52.
51. J.E.Hatch,”Aluminium Proterties and Physical Metallurgy” ASM, (1984).
52. W.J.Clegg,Acta Metall.,36,(1988),2141.
53. Franck A.Girot,J.M.Quenisset and R.Naslain, Composites Science and Technology,30,(1987),155-184.
54. H.Mostaghaci,Processing of Ceramic and Metal Matrix Composites, Pergamon Press,New York,(1998).
55. M.D.Skibo,D.M.Schuster,USP 5167920,(1992).
56. M.D.Skibo,D.M.Schuster,USP 4759995,(1988).
57. D.J.Lloyd and Chamberlain,in Proc.Int.Symp.on Advences in Cast Reinforced Metal Composites,ed.S.G.Fishman and A.K.Dingra,Materials Park,OH,ASM,(1988),263-269.
58. Fleischer RL, Dimiduk DM, Lipsitt HA. Annu Rev Mater Sci (1989) ;19:231.
59. Anton DL, Duhn DN, Giamci AF. J Minerals, Metals and Materials Society ,(1989); 41:12.
60. Kumar KS. Int Mater Rev ,(1990);35:293.
61. P.B. Desch, R.B. Schwarz and P. Nash Scripta Mater. 34 (1996), p. 37.
62. G.J. Fan, X.P. Song, M.X. Wuan and Z.Q. Hu Mater Sci Eng. A231 (1997), 111.
63. Z.L. Wu, O.P. Pope and V. Vitek Scr Metall Mater. 24 ,(1990), 2187.
64. C. Suryanarayana, W. Li and F.H. Froes Scr Metall Mater. 31,(1994), 1465.
65. H. Mavuchi, K. Hirukawa, H. Tsuda and Y. Makauama Scr Metall Mater. 24, (1990), 505.

66. K.I. Moon, K.Y. Chang and K.S. Lee J Alloys Comp ,312, (2000), 273 German RM, Iacocca RG. In: Stoloff NS.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.35.203
論文開放下載的時間是 校外不公開

Your IP address is 3.146.35.203
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code