Responsive image
博碩士論文 etd-0729105-140036 詳細資訊
Title page for etd-0729105-140036
論文名稱
Title
以二氧化鈦薄膜為矽及磷化銦金氧半結構閘極氧化層之特性分析
Characterization of Silicon and Indium Phosphide MOS Structures with Titanium Oxide as Gate Oxides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
226
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-29
繳交日期
Date of Submission
2005-07-29
關鍵字
Keywords
有機金屬化學氣相沈積法、金氧半場效電晶體、二氧化鈦
MOCVD, MOSFET, TiO2
統計
Statistics
本論文已被瀏覽 5730 次,被下載 0
The thesis/dissertation has been browsed 5730 times, has been downloaded 0 times.
中文摘要
利用有機金屬化學氣相沈積(MOCVD)在矽(Si)基板上生長之二氧化鈦(TiO2)薄膜具有高的介電常數,但由於TiO2薄膜是多晶結構,其晶界具有很多缺陷及懸鍵,故其漏電流也非常大,另TiO2有較低的能隙,不易阻擋熱離子發射電流(thermal ionic emission current),也是漏電流非常大的原因之一。
一般克服的方法是將二氧化矽(SiO2)薄膜製作在MOCVD-TiO2/Si的界面而形成MOCVD-TiO2/SiO2/Si之結構,漏電流可大為改善,這是因為SiO2薄膜生長在Si基板上具有良好的品質且具有較高之能障,但此種結構的缺點卻失去原本TiO2薄膜所具有的高介電常數,因為TiO2薄膜生長在SiO2上為非晶結構,且低介電常數之SiO2薄膜會降低整體氧化層的電容值。如果利用液相沈積法(Liquid Phase Deposition-LPD)生長SiO2薄膜覆蓋在MOCVD-TiO2/Si上形成LPD-SiO2/MOCVD-TiO2/Si之結構,這將可保有原本MOCVD-TiO2/Si高介電常數之特性,而且由於LPD-SiO2薄膜的高能障和從LPD溶液而來的氟離子可鈍化MOCVD-TiO2薄膜晶界上之懸鍵,在漏電流方面將可大為改善。因此,LPD-SiO2/MOCVD-TiO2/Si結構不但具有高的介電常數,而且有較低之漏電流。因此,利用LPD-SiO2/MOCVD-TiO2薄膜做為金氧半場效電晶體(MOSFET)的閘極氧化層可得到較低的漏電流、較小的次臨界斜率、較高的轉導及較高的移動率。
另外,LPD-SiO2/MOCVD-TiO2薄膜生長在經硫化銨處理過後的磷化銦基板上不但有低的漏電流且有低的介面能態密度,其漏電流在電場正負1.5 MV/cm分別為1.37×10-7 A/cm2和1.45×10-7A/cm2,其最低的介面能態密度可達到4.7×1011 cm-2eV-1,其介電常數可達到61.2。因此,LPD-SiO2/MOCVD-TiO2是一種具有高介電常數和低漏電流之薄膜結構。
Abstract
The dielectric constant of poly-crystalline titanium oxide (TiO2) films grown on silicon (Si) by metal organic chemical vapor deposition (MOCVD) is high. The leakage current is also high, which is dominated by the grain boundary and lower barrier height. Silicon oxide (SiO2) film is used as an interfacial layer for the structure of MOCVD-TiO2/SiO2/Si. The leakage current is much improved due to the high quality and high barrier height of SiO2/Si, but the total capacitance is lost due to the series of low-dielectric constant SiO2 films and amorphous low dielectric constant of TiO2 film grown on SiO2. Liquid-phase-deposited SiO2 is used as a cap layer for the structure of LPD-SiO2/MOCVD-TiO2/Si, the high dielectric constant of MOCVD-TiO2/Si is preserved. The leakage current is much improved due to the high barrier height SiO2 and the passivation of the dangling bonds of the grain boundary of poly-crystalline MOCVD-TiO2 films by the F from LPD-SiO2 films. Therefore, high dielectric constant and low leakage current LPD-SiO2/MOCVD-TiO2/Si films were obtained. Therefore, MOSFET with LPD-SiO2/MOCVD-TiO2 gate oxide can have lower off state leakage current, smaller subthreshold swing, higher transconductance, and higher field effect mobility.
On the other hand, LPD-SiO2/MOCVD-TiO2 film on (NH4)2Sx-treated InP not only can lower leakage current but can lower interface state density. The leakage current densities are 1.37×10-7 A/cm2 and 1.45×10-7A/cm2 under positive and negative electric fields at 1.5 MV/cm, respectively. The lowest interface state density is 4.7×1011 cm-2eV-1 in the band gap. Moreover, the dielectric constant can reach 61.2. Therefore, LPD-SiO2/MOCVD-TiO2 structure is a high dielectric constant and low leakage current film.
目次 Table of Contents
CONTENTS

ACKNOWLEDGMENT I
LIST OF FIGURES IX
LIST OF TABLES XVI
ABSTRACT XVII

1. Introduction 1
1-1 Developments in integrate circuits 1
1-2 Roadmap of the gate dielectric 3
1-3 Properties of TiO2 4
1-4 Comparison of deposition methods of TiO2 5
1-5 Advantages of MOCVD 5
1-6 Drawback of TiO2 for electric applications 6
1-7 Motivation of LPD-SiO2/MOCVD-TiO2/Si structure 7

2. Literatures Review 15
2-1 Ideal MOS capacitor 15
2-1-1 Ideal capacitance-voltage curve 15
2-1-2 A mathematical calculation of the dynamic capacitance 16
2-2 Actual MOS capacitor 19
2-2-1 Flat band voltage shift and stretch-out effect on MOS high frequency C-V measurements 20
2-2-2 Extraction of interface trap by Terman method 21
2-2-3 Capacitance-voltage hysteresis loop 23
2-2-4 Quantum mechanical in high frequency C-V measurements 23

3. Experiments 33
3-1 Titanium oxide prepared by MOCVD 33
3-1-1 CVD theorem 33
3-1-2 Deposition system of MOCVD 34
3-1-3 Properties of source materials 35
3-1-3.1 Ti metalorganic precursor 35
3-1-3.2 N2O decomposed 35
3-2 Silicon oxide prepared by LPD 36
3-2-1 Deposition system 36
3-2-2 Mechanisms of LPD-SiO2 36
3-2-3 Preparations of deposition solutions 37
3-2-3.1 SiO2 saturated H2SiF6 solution 37
3-2-3.2 Boric acid solution 38
3-3 Deposition procedures 39
3-3-1 Si wafer cleaning procedures 39
3-3-2 Aluminum metal cleaning processes 39
3-3-3 Preparations of TiO2 thin films 40
3-3-4 Preparations of SiO2 thin films 40
3-4 Characterization 41
3-4-1 Physical properties 41
3-4-2 Chemical properties 42
3-4-3 Electrical properties 42

4. Characterization of silicon MOS structures with titanium oxide as gate oxides 50
4-1 Characteristics of MOCVD-TiO2 films on Si substrate 50
4-1-1 Thickness of TiO2 films as a function of growth temperature 51
4-1-2 XRD spectra of TiO2 films as a function of growth temperature 51
4-1-3 SEM morphologies of TiO2 films as a function of growth temperature 52
4-1-4 AFM surface roughness of TiO2 films as a function of
growth temperature 52
4-1-5 SIMS depth profile of TiO2 films as a function of growth
temperature 53
4-1-6 ESCA analyses of TiO2 films as a function of growth
temperature 54
4-1-7 Dependence electrical properties of TiO2 films on growth temperature 56
4-1-7.1 Leakage current density of TiO2 films as a function of growth temperature 57
4-1-7.2 C-V characteristics and dielectric constant of TiO2 films as a function of growth temperature 58
4-2 Improvement in electrical properties of as-grown TiO2 films by oxygen annealing 61
4-2-1 ESCA analyses of O2-annealed TiO2 films as a function of growth temperature 62
4-2-2 Investigation of electrical properties of as-grown TiO2 film
by oxygen annealing 63
4-3 Characteristics of LPD-SiO2/MOCVD-TiO2 films on Si substrate 65
4-3-1 Properties of LPD-SiO2 film on Si substrate 65
4-3-1.1 AFM surface roughness of LPD-SiO2 film on Si substrate 66
4-3-1.2 Transmittance spectrum of LPD-SiO2 film on glass 66
4-3-1.3 Investigation of electrical properties of LPD-SiO2 film on Si substrate 67
4-3-2 Properties of LPD-SiO2/MOCVD-TiO2 film on Si substrate 67
4-3-2.1 FTIR of LPD-SiO2/MOCVD-TiO2 film 70
4-3-2.2 Electrical properties of LPD-SiO2/MOCVD-TiO2/Si structure 71
4-3-3 Decreases the thickness of LPD-SiO2 film and MOCVD-TiO2 film 72
4-3-3.1 SIMS and ESCA depth profiles of LPD-SiO2/ MOCVD-TiO2/Si structure 73
4-3-3.2 Electrical properties of LPD-SiO2 (1 min)/ MOCVD-TiO2 (4 min)/Si structure 74
4-3-3.3 Thin MOCVD-TiO2 films on Si after removal of LPD-SiO2 75
4-3-3.4 Further thin MOCVD-TiO2 films on Si after removal of LPD-SiO2 76
4-4 Characteristics of MOSFET with MOCVD-TiO2 as gate oxide 79
4-4-1 Fabrication process of MOSFET with MOCVD-TiO2 gate oxide 79
4-4-2 Electrical characteristics of MOSFET with MOCVD-TiO2 gate oxide 80
4-4-3 Electrical characteristics of MOSFET with LPD-SiO2/ MOCVD-TiO2 gate oxide 82

5. Characterization of indium phosphide MOS structures with titanium oxide as gate oxides 160
5-1 The importance of high-K material on InP 160
5-2 Preparation of LPD-SiO2/MOCVD-TiO2 on (NH4)2Sx treated InP 162
5-2-1 Physical properties of LPD-SiO2/MOCVD-TiO2 on (NH4)2Sx treated InP 163
5-2-2 ESCA analyses of of LPD-SiO2/MOCVD-TiO2 on (NH4)2Sx treated InP 164
5-2-3 Electrical properties of LPD-SiO2/MOCVD-TiO2 on (NH4)2Sx treated InP 165
5-3 Preparation of LPD-TiO2 on (NH4)2Sx treated InP 168
5-3-1 Physical properties of LPD-TiO2 on (NH4)2Sx treated InP 169
5-3-2 Electrical properties of LPD-TiO2 on (NH4)2Sx treated InP 170

6. Conclusions 191

REFERENCES 195

Vita 203

Publication List 204
參考文獻 References
[1] A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, pp. 1032-1038, 2000.
[2] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., vol. 16, pp. 1838-1849, 2001.
[3] D. K. Schroder: Semiconductor Material and Device Characterization, 2nd ed. (John Wiley & Sons, INC, New York) Ch. 6, 1998.
[4] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[5] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p. 316, 1973.
[6] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients”, J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[7] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[8] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90, pp.5896-5900, 1986.
[9] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-films with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[10] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[11] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[12] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[13] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Films, vol. 323, pp. 59-62, 1998.
[14] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[15] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[16] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[17] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[18] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[19] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[20] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[21] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[22] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
[23] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[24] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[25] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391, 1965.
[26] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[27] O. Harizanov, and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[28] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[29] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[30] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[31] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[32] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp. 218-224, 2000.
[33] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[34] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[35] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[36] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[37] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[38] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[39] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[40] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,” Thin Solid Films, vol. 401, pp. 88-93, 2001.
[41] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[42] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[43] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[44] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[45] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[46] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[47] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000.
[48] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[49] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[50] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[51] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond. Sci. Technol., vol. 20, pp. 519-523, 2005.
[52] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp. 766-771, 2000.
[53] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[54] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate”, Appl. Phys. Lett., vol. 66, pp. 815-821, 1995.
[55] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films”, Thin Solid Films, vol. 198, pp. 199-205, 1991.
[56] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[57] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[58] G. Stringfellow: Organometallic vapor phase epitaxy: Theory and Practice, Academic Press, Boston, 1989.
[59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp. 224-228, 2003.
[61] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217 (2002).
[62] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 films,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[63] E. H. Nicollian, and J. R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology, 2nd ed. (Wiley, New York) 1991.
[64] R. Rios and N. D. Arora, “Determination of ultra-thin oxide thickness for CMOS structure using quantum effects,” IEDM, pp. 613-616, 1994.
[65] Available: http://www-device.eecs.berkeley.edu/~kjyang/qmcv/
[66] S. M. Sze: Physics of Semiconductor Devices, 2nd ed. (Wiley, New York) p. 366, 1981.
[67] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., pp. 512, 2000.
[68] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[69] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[70] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating”, J. Electrochem. Soc., vol. 135, pp. 2013, 1989.
[71] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O. Brien, and M. E. Pemble, “Synthesis and characterization of two novel titanium isopropoxides stabilized with a chelating alkoxide: their use in the liquid injection MOCVD of titanium dioxide thin films”, J. Mater. Chem., vol. 8, pp. 1773-1777, 1998.
[72] “Powder Diffraction File,” Joint committee on powder diffraction standards.
[73] Y. S. Kim, M. Y. sung, Y. H. Lee, B. K. Ju, and M. h. Oh, “The influence of surface roughness on the Rlrctric conduction process in amorphous Ta2O5 thin films,” J. Electrochem. Soc., vol. 146(9), pp. 3398-3402, 1999.
[74] S. F. Chen, and C. W. Wang, “Effect of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO2 thin films,” J. Vac. Sci. & Technol. B, vol. 20(1), pp. 263-270, 2002.
[75] Y. Jeon, B. H. Lee, K. Zawadzki, W. J. Qi, A. Lucas, R. Nieh, and J. C. Lee, “Effect of barrier layer on the electrical and reliability characteristics of high-k gate dielectric films,” IEDM, pp. 797-800, 1998.
[76] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci., vol. 207, pp. 13-19, 2003.
[77] K. A. Eliis, and R. A. Bunhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. Res. & Dev., vol. 43, pp. 287-300, 1999.
[78] J. Shin, S. Jeon, and H. Hwang, “Electrical characteristics of high-K metal oxide/SiO2 stack gate dielectric prepared by reaction of metal with SiO2,” J. Electronanalytical Chem., vol. 147, pp. F1-F3, 2000.
[79] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, T. V. Malsteva, and U. A. Yanovskil, “Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient,” Appl. Surf. Sci., vol. 166, pp. 51-56, 2000.
[80] S. C. Li, and S. P. Murarka, “Electrical characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment,” J. Appl. Phys., vol. 72(9), pp. 4214-4219, 1992.
[81] E. G. Stein von Kamienski, F. Portheine, J. Stein, A. Golz, and H. Kurz, “Charge trapping in dry and wet oxides on N-type 6H-SiC studied Fowler-Nordheim charge injection,” J. Appl. Phys., vol. 79, pp. 2529-2534, 1996.
[82] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., vol. 5, pp. 285-299, 1962.
[83] T. Sakurai, and T. Sugano, “Theory of continuously distributed trap states at Si-SiO2 interfaces,” J. Appl. Phys., vol. 52, pp. 2889-2896, 1981.
[84] C. F. Yeh, and S. S. Lin, “Effects of plasma treatment on the properties of room-temperature liquid-phase deposited (LPD) oxide films,” J. Non-Cryst. Solids, vol. 187, pp. 81-85, 1995.
[85] H. Fukuda, M. Yasuda, and T. Lwabuchi, “Process dependence of the SiO2/Si(100) interface trap density of ultra-thin SiO2 films,” J. Appl. Phys., vol. 72, pp. 1906-1911, 1992.
[86] W. D. Brown, and W. W. Grannemann, “C-V characteristics of metal-titanium dioxide-silicon capacitors,” Solid-State Electron., vol. 21, pp. 837-846, 1978.
[87] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[88] R. Iyer, R. R. Chang, and D. L. Lele, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[89] G. Eftekhari, “Effects of sulfur passivation and rapid thermal annealing on the electrical properties of InP metal-insulator semiconductor Schottky diodes,” J. Vac. Sci. & Technol. B, vol. 12, pp. 3214-3217, 1994.
[90] E. K. Kim, M. H. Son, S. K. Min, Y. K. Han, and S. S. Yom, “Growth of highly oriented TiO2 thin films on InP(100) substrates by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 170, pp. 803-807, 1997.
[91] Y. K. Han, T. G. Lee, S. S. Yom, M. H. Son, E. K. Kim, S. K. Min, and J. Y. Lee, “Comparison between TiO2 thin films on InP and GaAs substrate by metalorganic chemical vapor deposition,” J. Kor. Phys. Soc., vol. 32, pp. 1697-1699, 1998.
[92] K. Vydianathan, G. Nuesca, G. Peterson, E. T. Eisenbraun, A. E. Kaloyeros, J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics application,” J. Mater. Res., vol. 16, pp. 1838-1849, 2001.
[93] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley 1981.
[94] E. K. Kim, M. Ho, and S. K. Min, “Postgrowth annealing effects of TiO2 thin films grown on InP substrate at low-temperature by metal-organic chemical-vapor deposition,” J. Appl. Phys., vol. 79, pp. 4459-4461, 1996.
[95] Y. S. Lee, and W. A. Anderson, “High-barrier height metal-insulator-semiconductor diodes on n-InP,” J. Appl. Phys., vol. 65, pp. 4051-4056, 1989.
[96] R. R. Sumathi, N. V. Giridharan, R. Jayavel, and J. Kumar, “BaTiO3 as an insulating layer for InP-based metal insulator semiconductor structures,” Mater. Lett., vol. 51, pp. 56-60, 2001.
[97] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[98] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B, vol. 6, pp. 1174-1179, 1988.
[99] D. Landheer, G. H. Yousefi, and J. B. Webb, “Deep-level transient spectroscopy of HF-cleaned and sulfur-passivated InP metal/nitride/semiconductor structures,” J. Appl. Phys., vol. 75, pp. 3516-3521, 1994.
[100] H. El Omari, J. P. Boyeaux, A. Errkik, M. Lemiti, and A. Laugier, “Effect of TiOx on the formation of titanium silicide layer,” J. Appl. Phys., vol. 93, pp. 9803-9811, 2003.
[101] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[102] D. A. Buchanan, and D. J. DlMaria, “Interface and bulk trap generation in metal-oxide-semiconductor capacitors,” J. Appl. Phys., vol. 67, pp. 7439-7452, 1990.
[103] M. Y. Doghish, and F. D. Ho, “A comprehensive analytical model for metal insulator semiconductor devices,” IEEE Trans. Electron Devices, vol. 39, pp. 2771-2780, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.93.207
論文開放下載的時間是 校外不公開

Your IP address is 18.226.93.207
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code