Responsive image
博碩士論文 etd-0729105-151040 詳細資訊
Title page for etd-0729105-151040
論文名稱
Title
台灣週遭水域CH4和N2O的分佈
Distribution of CH4 and N2O in natural waters around Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-30
繳交日期
Date of Submission
2005-07-29
關鍵字
Keywords
甲烷、氧化亞氮、北太平洋底層水
N2O, CH4, North Pacific Deep Water
統計
Statistics
本論文已被瀏覽 5677 次,被下載 943
The thesis/dissertation has been browsed 5677 times, has been downloaded 943 times.
中文摘要
摘要
甲烷(CH4)和氧化亞氮(N2O)不僅是大氣中重要的微量氣體,還是壽命較長的溫室效應氣體。台灣CH4釋放量的研究對於河、湖等水體的研究較少;而河、湖、沿海等水體N2O的釋放量尚未有人研究。因此本文將對台灣週遭水域CH4和N2O的分佈作初步的探討。
台灣自然水體中,河川平均CH4濃度約為3082±12399nM (n=152);高山湖泊平均CH4濃度約為2899±7291nM (n=51);平地湖泊及水庫平均CH4濃度為1825±2755nM (n=95);近岸表水平均CH4濃度約為36.7±285nM (n=476),其分佈為河流>高山湖泊>平地湖泊及水庫>海洋。大陸東南地區河川平均CH4濃度為1029±2487nM (n=36),大陸東南地區所採的樣品,水體中平均的CH4濃度低於台灣河川,但其水體中濃度最高的赤崁河(14914nM),濃度卻比台灣大部份的河川高,可能是因為大陸地區城、鎮開發的程度差異很大,加上人口分佈不均造成的結果。
台灣地區河川平均N2O的濃度為32.8±69.1nM (n=58);大陸東南地區所採河川樣品平均N2O濃度為29.7±9.05nM (n=36)。台灣河川中N2O的濃度明顯高於大陸河川,可能是台灣地區使用較多的肥料,使土壤富含較多的氮;河流流過土壤或雨水沖刷土壤後匯入河流,都會提高河川中氮的含量,及N2O的濃度。
夏季台灣海峽北部平均CH4、N2O濃度為3.27±2.42nM、7.22±0.62 nM (n=7),平均釋放通量為0.17±0.43μmol/m2/h、0.14±0.26μmol/m2/h,海峽南部平均CH4、N2O濃度為3.35±1.97nM、10.31±2.51nM (n=30),平均釋放通量為0.04±0.09μmol/m2/h、0.19±0.22 μmol/m2/h。冬季台灣海峽北部平均CH4、N2O濃度為4.74±1.43nM、8.41±0.46nM (n=9),平均釋放通量為0.10±0.14μmol/m2/h、0.008±0.033μmol/m2/h,海峽南部平均CH4、N2O濃度為4.70±2.42nM、8.36±0.97nM (n=17),平均釋放通量為0.17±0.46μmol/m2/h、0.11±0.12μmol/m2/h。台灣海峽於夏、冬季皆為大氣CH4和N2O的源。
南海夏季表水平均CH4、N2O濃度為4.34±2.33nM、8.23±1.5nM (n=55),平均釋放通量為0.33±0.35μmol/m2/h、0.20±0.24 μmol/m2/h,南海於夏季為大氣CH4和N2O的源。
西菲律賓海夏季表水平均CH4、N2O濃度為3.18±1.57nM、4.64±0.39nM (n=60),平均釋放通量為0.23±0.33μmol/m2/h、-0.28±0.30 μmol/m2/h,西菲律賓海於夏季為大氣CH4的源、N2O的匯。
Abstract
Abstract
Methane (CH4) and nitrous oxide (N2O) are not only important but also long-lived greenhouse gases. Unfortunately, in Taiwan, although there are some data on CH4 emission from rivers and lakes there is no data about N2O emission from rivers, lakes and coasts. So this study investigated CH4 and N2O distribution in natural waters around Taiwan.
In Taiwan, the average CH4 concentration in rivers is about 3082±12399nM (n=152). The average CH4 concentration in mountain lakes is about 2899±7291nM (n=51). The average CH4 concentration in lower elevation lakes and reservoirs is about 1825±2755nM ppmv (n=95). The average CH4 concentration in near-shore waters is about 36.7±285nM (n=476). The CH4 distribution is rivers> mountain lakes>low-elevation lakes and reservoirs >seawater. In southeastern China, the average CH4 concentration in rivers is about 1029±2487nM ppmv (n=36). The average CH4 concentration of samples taken from rivers in southeastern China is lower than Taiwan rivers. But the highest CH4 concentration of all samples is in Chih-Kan river of southeastern China (14914nM), due to uneven population distribution as well as different levels of development among cities and suburbs.
In Taiwan, the average N2O concentration in rivers is about 32.8±69.1nM (n=58). In southeastern China, the average N2O concentration in rivers is about 29.7±9.05nM (n=36). The average N2O concentration in Taiwanese rivers is higher than found in southeastern China. This is likely because farmers in Taiwan use more synthetic fertilizers so the soil becomes full of N element, and then rivers and rains rinse the soil. This process has increased the concentration of N and N2O in rivers.
In summer, the average CH4 and N2O concentrations in northern Taiwan Strait are about 3.27±2.42nM and 7.22±0.62nM (n=7), respectively; and the average CH4 and N2O fluxes are about 0.17±0.43μmol/m2/h and 0.14±0.26 μmol/m2/h, respectively. The average CH4 and N2O concentrations in southern Taiwan Strait are about 3.35±1.97nM and10.31±2.51nM (n=30), respectively; and the average CH4 and N2O fluxes are about 0.04±0.09μmol/m2/h and 0.19±0.22 μmol/m2/h, respectively.
In winter, the average CH4 and N2O concentrations in northern Taiwan Strait are about 4.74±1.43nM and 8.41±0.46nM (n=9), respectively; and the average CH4 and N2O fluxes are about 0.10±0.14μmol/m2/h and 0.008±0.033 μmol/m2/h, respectively. The average CH4 and N2O concentrations in southern Taiwan Strait are about 4.70±2.42nM and 8.36±0.97nM (n=17), respectively; and the average CH4 and N2O fluxes are about 0.17±0.46μmol/m2/h and 0.11±0.12 μmol/m2/h, respectively. Taiwan Strait is a source of CH4 and N2O regardless of whether it is summer or winter.
In summer, the average CH4 and N2O concentrations in the South China Sea are about 4.34±2.33nM and 8.23±1.5nM (n=55), respectively; and the average CH4 and N2O fluxes are about 0.33±0.35μmol/m2/h and 0.20±0.24 μmol/m2/h, respectively. It is a source of CH4 and N2O to the atmosphere.
In summer, the average CH4 and N2O concentrations in the West Philippines Sea are about 3.18±1.57nM and 4.64±0.39nM (n=60), respectively; and the average CH4 and N2O fluxes are about 0.23±0.33μmol/m2/h and -0.28±0.30 μmol/m2/h, respectively. It is a source of CH4 but a sink of N2O to the atmosphere.
目次 Table of Contents
目錄
致謝------------------------------------------------------------------------------ I
中文摘要---------------------------------------------------------------------- III
英文摘要----------------------------------------------------------------------- V
目錄--------------------------------------------------------------------------- VII
圖目錄----------------------------------------------------------------------- VIII
表目錄----------------------------------------------------------------------- XIV
第一章、緒論------------------------------------------------------------------ 1
第二章、研究材料及方法
2.1、研究材料----------------------------------------------------------- 6
2.2、研究方法----------------------------------------------------------- 17
第三章、結果與討論—淡水部分
3.1台灣河川、湖泊及水庫CH4、N2O的分佈及釋放量---------- 21
3.2大陸CH4、N2O的濃度分佈及討論------------------------------ 40
第四章、結果與討論—海水部分
4.1南灣CH4的季節性變化------------------------------------------- 48
4.2台灣海峽水文性質及表水CH4、N2O濃度夏、冬之變化---- 51
4.3西菲律賓海、南海CH4和N2O的分佈-------------------------- 84
4.4台灣週遭水域表水CH4和N2O的分佈及釋放通量-------- 121
第五章、結論----------------------------------------------------------------- 133
參考文獻--------------------------------------------------------------------- 135
參考文獻 References
參考文獻
行政院主計處八十九年戶口及住宅普查
(http://www.dgbas.gov.tw/census%7En/six/lue5/census_p&h.htm)
行政院環保署
(http://ww2.epa.gov.tw/wq/ewmain.htm)
歐洲中尺度氣象預報中心
(http://www.ecmwf.int/)
美國國家太空總署(NASA)
(http://www.coaps.fsu.edu/cgi-bin/qscat/wind-swath-ku2001)

王銀波、謝學武,1997。台灣中、南部水稻田、旱田、溼地、林地及坡地土壤甲烷之釋放及其影響因子。台灣地區大氣環境變遷,台大全球變遷中心,p99-121。
王樹倫、陳鎮東、張哲明、呂世宗,1995。南台灣河、湖、淺海及溼地之甲烷釋出量研究。國家科學委員會專題研究報告,台北,台灣。19pp。
王樹倫、陳鎮東、張哲明,1997。台灣臨近水域甲烷通量之研究。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),p143-154。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
王樹倫、陳鎮東、張哲明,1998。台灣地區湖泊甲烷釋放量。海洋與湖沼(Oceanologia et Limnologia Sinica),第29卷,第5期,p527-534。
呂世宗,1993。台灣地區微量氣體含量及通量之研究。行政院國家科學委員會專題計畫成果報告,p5-7。
呂世宗、柳中明、楊盛行,1998。台灣地區大氣環境變遷(III)。台大全球變遷中心,台北。
刑麗玉,2004。台灣海峽溶解有機氮、磷及營養鹽消耗程度分佈情形。國立中山大學海洋地質及化學研究所碩士論文,142pp。
李宏仁,1999。南灣潮流驅動渦流及冷水入侵成因之探討。國立台灣大學海洋研究所博士論文,226pp。
李福祥,2003。台灣東部黑潮流域之海水碳化學研究。國立中山大學海洋地質及化學研究所碩士論文,54pp。
周文臣,2004。南海時間序列測站海水之碳化學參數與碳-13之垂直分佈及其在混合層中的季節變化。國立中山大學海洋地質及化學研究所博士論文,211pp。
侯偉萍,2004。南海周遭海域二氧化碳變化之研究。國立中山大學海洋地質及化學研究所碩士論文,112pp。
陳汝勤、林斐然,1990。台灣附近之海洋地質。經濟部中央地質調查所編印,79pp。
陳汝勤、劉家瑄,2004。台灣西南海域天然氣水合物賦存區之地質與地球物理研究。台大校友雙月刊,p13-16。
陳彥谷,1994。北台灣海域海水中甲烷含量之研究。國立台灣大學海洋研究所碩士論文,62pp。
陳鎮東,2001。南海海洋學。國立編譯館,506pp。
陳顗竹、賴朝明、楊盛行,2003。溼地二氧化碳及甲烷通量測定及減量對策。溫室氣體通量測定及減量對策(IV),國立台灣大學全球變遷中心,國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣,p237-250。
張讚昌、楊盛行,1998。台灣北部水稻田、溼地及森林土壤之甲烷釋放。台灣地區大氣環境變遷(三),國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣,p7-33。
彭德昌、黃山內,1998a。東部水田土壤甲烷氣體之釋放及其影響因子。台灣地區大氣環境變遷(三),台灣大學全球變遷中心與農化系,台北,p314-332。
彭德昌、黃山內,1998b。台灣東部水田土壤甲烷氣體之釋放及其影響因子。花蓮區農業改良場農業彙報第16輯,p35-46。
楊盛行,1996。溫室效應機制及預測-因應「氣候變化綱要公約」之整合計劃:(2)我國森林吸收二氧化碳之涵容估算和我國溫室氣體甲烷與氧化亞氮排放與IPCC估算之差距。環保署研究計劃,EPA85-1003-09-13。
楊盛行、張琇蘭、張讚昌、魏嘉碧,1997。台灣北部水稻田及溼地甲烷釋放及其環境因子。台灣地區大氣環境變遷,國立台灣大學農業化學系和駝力台灣大學全球變遷中心,台北,台灣,p6-59。
趙震慶,1997。台灣中部及南部水稻田、旱田、溼地、森林及坡地果園土壤氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.173-194。國立台灣大學農業化學系、國立台灣大學全球變遷中心,台北、台灣。
賴朝明,1997。台灣北部水稻田、旱田、溼地、林地和垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷,國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣,p383-400。
賴朝明,1998。台灣北部旱田、森林土壤及垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(三),國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣,p105-117。
賴朝明、錢元皓、楊盛行,2003。水稻田、旱田及溼地氧化亞氮排放量測及減量對策。溫室氣體通量測定及減量對策(IV),國立台灣大學全球變遷中心,國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣,p73-88。

Albritton, D., R. Derwent, I. Isaksen and L. M. Wuebbles, 1996. Radiative forcing of climate change, P.118-131. In J. T. Houghton et al. (ed.), Climate change 1995, the science of climate change. Cambridge University Press, New York, N. Y.
Amouroux, D., G. Roberts, S. Rapsomanikis and M. O. Andreae, 2002. Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuarine, Coastal and Shelf Science, 54, 575-587.
Bange, H. W. and M. O. Andreae, 1999. Nitrous oxide in the deep waters of the world’s oceans. Global Biogeochemical Cycles, 13, 4, 1127-1135.
Bange, H. W., U. H. Bartell, S. Rapsomanikis and M. O. Andreae, 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles, 8, 465-480.
Bange, H. W., S. Rapsomanikis and M. O. Andreae, 1996. The Aegean Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry, 53, 41-49.
Battle, M., M. Bender, T. Sowers, P. P. Tans, J. H. Butler, J. W. Elkins, J. T. Ellis, T. Conway, N. Zhang, P. Lang and A. D. Clarket, 1996. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature, 383, 231-235.
Berner, U., J. Poggenburg, E. Faber, D. Quadfasel and A. Frische, 2003. Methane in ocean waters of the Bay of Bengal: Its sources and exchange with the atmosphere. Deep-Sea Research, Part II, 50, 925-950.
Bouwman, A. F., K. W. van der Hoek and J. G. Olivier, 1995. Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research, 100, 2785-2800.
Butler, J. H., J. W. Elkins and T. M. Tompson, 1989. Tropospheric and dissolved N2O of the West Pacific and East Indian oceans during the El Niño southern oscillation event of 1987. Journal of Geophysical Research, 94, 14865-14877.
Capone, D. G., 1991. Aspects of the marine nitrogen cycle with relevance to the dynamics of nitrous and nitric oxide, in Microbial Production and Consumption of greenhouse gases, edited by J. E. Rogers and W. E. Whitman, pp.255-275, Am. Soc. Of Microbiol., Washington, D. C..
Chang, T. C., Y. C. Luo and S. S. Yang, 1999. Determination of major greenhouse gases by gas-type FTIR spectroscopy. In: Flux and Mitigation of Greenhouse Gases. Department of Agricultural Chemistry and Global Change Research Center of National Taiwan University, Taipei, Taiwan, p59-73.
Chang, T. C. and S. S. Yang, 2003. Methane emission from wetlands in Taiwan. Atmospheric Environment, 37(32), 4551-4558.
Chen, C. T. A., 2003. Rare northward flow in the Taiwan Strait in winter: a note. Continental Shelf Research, 23, 387-391.
Chen, M. P. and A. Bychkov, 1992. ROC-Russia marine science collaboration project: Kuroshio edge exchange processes marginal seas study (KEEP-MASS), 409pp.
Chen, C. T. A., Y. S. Chen and S. L. Wang, 1994. Methane emissions from natural waters in Taiwan. Proceedings of the 7th IUAPPA Regional Conference on Air Pollution and Waste Issues, Nov. 2-4, Taipei, VI, 51-61.
de Angelis, M. A. and C. Lee, 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnology and Oceanography, 39, 1298-1308.
Dong, L. F., D. B. Nedwell, G. J. C. Underwood, D. C. O. Thornton and I. Rusmana, 2002. Nitrous oxide formation in the Colne estuary, England: the central role of nitrite. Applied and Environmental Microbiology, 68, 1240-1249.
Elkins, J. W., S. C. Wofsy, M. B. McElroy, C. E. Kolb and W. A. Kaplan, 1978. Aquatic sources and sinks for nitrous oxide. Nature, 275, 602-606.
Halbach, P., E. Holzbecher, T. Reichel and R. Moche, 2004. Migration of the sulphate-methane reaction zone in marine sediment of the Sea of Marmara- can this mechanism be tectonically induced? Chemical Geology, 205, 73-82.
Hashimoto, S., K. Gojo, S. Hikota, N. Sendai and A. Otsuki, 1999. Nitrous oxide emissions from coastal waters in Tokyo Bay. Marine Environmental Research, 47, 213-223.
Hsu, S. C., F. J. Lin, W. L. Jeng, Y. C. Chung and L. M. Shaw, 2003. Hydrothermal signatures in the southern Okinawa Trough detected by the sequential extraction of settling particles. Marine Chemistry, 84, 49-66.
Intergovernmental Panel on Climate Change (IPCC), 2001. Technical summary of the working group I report, C.1, pp.38-43; pp. 239-287.
Ivanov, M. V., A. Y. Lein and V. F. Galchenko, 1991. The oceanic global methane cycle. Biogeochemistry of Global Change. pp.505-520.
Jan, S., C. S. Chen and J. Wang, 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. Journal of Oceanography, 58, 837-850.
Johnson, K. M., J. E. Hughes, P. L. Donaghay and J. M. Sieburth, 1990. Bottle-calibration static head space method for the determination of methane dissolved in seawater. Analytical Chemistry, 62, 2408-2412.
Kankaala, P. and I. Bergström, 2004. Emission and oxidation of methane in Equisetum fluviatile stands growing on organic sediment and sand bottoms. Biogeochemistry, 67, 21-37.
Karl, D. M. and B. D. Tilbrook, 1994. Production and transport of methane in oceanic particulate organic matter. Nature, 368, 732-734.
Kelley, C. A. and W. H. Jeffrey, 2002. Dissolved methane concentration profiles and air-sea fluxes from 41oS to 27oN. Global Biogeochemical Cycles, 16, 3, 1040, doi:10.1029/ 2001GB001809.
Khail, M. A. K. and R. A. Rasmussen, 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus, 42B, 229-236.
Khail, M. A. K. and R. A. Rasmussen, 1992. The global sources of nitrous oxide. Journal of Geophysical Research, 97, 14651-14660.
Kipphut, G. W. and C. S. Martens, 1982. Biogeochemical cycling in an organic-rich coastal marine basin-3. Dissolved gas transport in methane-saturated sediments. Geochimica et Cosmochimica Acta, 46, 2049-2060.
Kroeze, C., A. Mosier and L. Bouwman, 1999. Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 13, 1-8.
Kroeze, C. and S. P. Seitzinger, 1998. The impact of land on N2O emissions from watersheds draining into the northeastern Atlantic Ocean and European Seas. Environmental Pollution, 102, 149-158.
Lammer, S and E. Suess, 1994. An improved head-space analysis method for methane in seawater. Marine Chemistry, 47, 115-125.
Lamontagne, R. A., J. W. Swinnerton, V. J. Linnenbom and W. D. Smith, 1973. Methane concentrations in various marine environments. Journal of Geophysical Research, 78, 5317-5324.
Liu, C. T. and R. J. Liu, 1988. The deep current in the Bashi Channel. Acta Oceanographica Taiwanica, 20, 107-116.
Machida, T., T. Nakazawa, M. Tanaka, Y. Fufii, S. Aoki and O. Watanabe, 1995. Atmospheric methane and nitrous oxide concentrations during the last 250 years. Geophysical Research Letters, 22, 2921-2924.
Martens, C. S. and J. V. Klump, 1980. Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes. Geochimica et Cosmochimica Acta, 44, 471-490.
Marty, D., P. Bonin, V. Michotey and M. Bianchi, 2001. Bacterial biogas production in coastal systems affected by freshwater inputs. Continental Shelf Research, 21, 2105-2115.
Meszaros, E., 1981. Atmospheric Chemistry. Elsevier Scientific Publishing Company, 3.3.1, 35-38.
Najjar, R. G., 1992. Marine biogeochemistry. In: Trenberth, K. E. (Ed), Climate System Modeling. Cambridge University Press, New York, pp. 241-280.
Naqvi, S. W. A., D. A. Jayakumar, P. V. Narvekar, H. Naik, V. V. S. S. Sarma, W. D’Souza, S. Joseph and M. D. George, 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature, 408, 346-349.
Nevison, C., J. H. Butler and J. W. Elkins, 2003. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Global Biogeochemical Cycles, doi:10.1029/2003GB002068.
Nevison, C. D. and E. A. Holland, 1997. A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and stratospheric O3 layer. Journal of Geophysical Research, 102, 25519-25536.
Nevison, C. D., R. F. Weiss and D. J. Erickson III, 1995. Global oceanic nitrous oxide emissions. Journal of Geophysical Research, 100, 15809-15820.
Nitani, H., 1972. Beginning of the Kuroshio, in Kuroshio, edited by H. Stommel and K. Yoshida. University of Tokyo Press, 353-369.
Patra, P. K. , S. Lal, S. Venkataramani, S. N. de Sousa, V. V. S. S. Sarma and S. Sardesai, 1999. Seasonal and spatial variability in N2O distribution in the Arabian Sea. Deep-Sea Research I, 46, 529-543.
Punshon, S. and R. M. Mooro, 2004. Nitrous oxide production and consumption in a eutrophic coastal embayment. Marine Chemistry, 91, 37-51.
Rehder, G. and E. Suess, 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75, 89-108.
Rehder, G., R. E. Keir, E. Suess and T. Pohlmann, 1998. The multiple sources and patterns of methane in North Sea waters. Aquatic Geochemistry, 4, 403-427.
Scranton, M. I. and K. McShane, 1991. Methane fluxes in the southern North Sea: the role of European rivers. Continental Shelf Reasearch, 11, 37-52.
Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnology and Oceanography, 33, 702-724.
Seitzinger, S. P. and C. Kroeze, 1998. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles, 12, 1, 93-113.
Srteet-Perrott, F. A., 1992. Tropical wetland sources. Nature, 355, 23-24.
Swinnerton, J. W., V. J. Linnenbom and C. H. Cheek, 1969. Distribution of methane and carbon monoxide between the atmosphere and natural waters. Environmental Science and Technology, 3, 836-838.
The Surface Ocean - Lower Atmosphere Study (SOLAS), 2002. Science Plan and Implementation Strategy, IGBP, 49, pp.64-66.
The Surface Ocean - Lower Atmosphere Study (SOLAS), 2003. Science Plan and Implementation Strategy, IGBP, 50, pp.68-69.
Tilbrook, B. D. and D. M. Karl, 1995. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 49, 51-64.
Traganza, E. D., J. W. Swinnerton and C. H. Cheek, 1979. Methane supersaturation and ATP-zooplankton blooms in near-surface waters of the western Mediterranean and the subtropical North Atlantic Ocean. Deep-Sea Research, Part A, 26, 1237-1245.
Tsurushima, N., S. Watanabe and S. Tsunogai, 1996. Methane in the East China Sea water. Journal of Oceanography, 52, 221-233.
Upstill-Goddard, R. C., J. Barnes, T. Frost, S. Punshon and N. J. P. Owens, 2000. Methane in the southern North Sea: Low-salinity inputs, estuarine, and atmospheric flux. Global Biogeochemical Cycles, 14, 1205-1216.
Usui, T., I. Koike, and N. Ogura, 1998. Vertical profiles of nitrpus oxide and dissolved oxygen in marine sediment. Marine Chemistry, 59, 253-270.
Wang, W. C., Y. L. Yung, A. A. Lacis, T. Mo and J. E. Hansen, 1976. Greenhouse effects due to atmospheric perturbations. Science, 194, 685-690.
Wang, W. C., G. Molnar, M. K. W. Ko, S. Goldenberg and N. D. Sze, 1990. Atmospheric trace gases and global climate: a seasonal model study. Tellus, 42B, 149-161.
Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382.
Watanabe, S., N. Higashitani, N. Tsurushima and S. Tsunogai, 1994. Annual variation of methane in seawater in Funka Bay, Japan. Journal of Oceanography, 45, 415-421.
Watanabe, S., N. Higashitani, N. Tsurushima and S. Tsunogai, 1995. Methane in the western North Pacific. Journal of Oceanography, 51, 39-60.
Ward, B. B., 1986. Nitrification in marine environments, in Nitrification, edited by J. I. Prosser, pp. 157-84, IRL Press, Washington, D. C..
Ward, B. B., H. E. Glover and F. Lipschultz, 1989. Chemoautotrophic activity of nitrification in the oxygen minmum zone off Peru. Deep-Sea Research, 36, 1031-1051.
Weiss, R. F., 1981. The temporal and spatial distribution of tropospheric nitrous oxide. Journal of Geophysical Research, 86, 7185-7195.
Weiss, R. F. and B. A. Price, 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8, 347-359.
Wiesenburg, D. A., and N. L. Guinasso, Jr, 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. Journal of Chemical and Engineering Data, 24, 356-360.
Yang, S. S., H. L. Chang, T. C. Chang, C. B. Wei and R. S. Chung, 1996. Trace gas emission from agriculture in Taiwan. In: proceedings of SCOPE/ISU Nitrogen Workshop: The Effect of Human Disturbance on the Nitrogen Cycle in Asia. Ed. by Lin, H. C., S. S. Yang, T. C. Hung and C. H. Chou. SCOPE/ISCU Program of Nitrogen Transport and Transformation. SCOPE/Academia Sinica, Taipei, Taiwan, p100-111.
Yoshinari, T., 1976. Nitrous oxide in the sea. Marine Chemistry, 4, 189-202.
Zhang, G. L., J. Zhang, Y. B. Kang and S. M. Liu, 2004. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code