Responsive image
博碩士論文 etd-0729108-043843 詳細資訊
Title page for etd-0729108-043843
論文名稱
Title
中溫固態氧化物燃料電池之陰極薄膜沉積及電化學性能研究
A study of deposition and electrochemical performance of cathode films for intermediate temperature solid oxide fuel cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
202
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-18
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
陰極薄膜、固態氧化物燃料電池、電化學性能
cathode films, electrochemical performance, solid oxide fuel cell
統計
Statistics
本論文已被瀏覽 5793 次,被下載 707
The thesis/dissertation has been browsed 5793 times, has been downloaded 707 times.
中文摘要
本研究以靜電輔助超波霧化沉積法(EAUSP) 在氧化釓摻雜氧化鈰(CGO)基材上沉積鑭鍶鈷鐵La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)氧化物膜。在高壓靜電場作用下,霧氣會在沉積過程中會向基材集中,不因上升熱氣流影響而散逸在大氣中。由此可知,施加高壓靜電場有助於薄膜之沉積。由XRD結果可知,所沉積之LSCF薄膜為立方晶鈣鈦礦結構。由SEM結果可知,靜電場強度影響薄膜之孔隙度,弱電場沉積之薄膜孔隙度較高。而在LSCF//CGO//LSCF對稱電池以交流阻抗法量測,所獲得之介面阻抗ASR及活化能,均與傳統製程之數值相當。由於EAUSP法是簡單,高效率又經濟的鍍膜法,由目前所獲得的薄膜及電化學性質可知,EAUSP法適合用來製備SOFC電極膜。
除了EAUSP法,靜電輔助噴塗(ESD)法,亦用來沉積LSCF薄膜。藉由一系列變化沉積時間與沉積溫度以了解LSCF膜在矽晶片之成長機制。結果顯示薄膜之初始成膜過程與沉積溫度有關。但沉積溫度略低於先驅物溶液的沸點時,可獲得單一多孔結構的薄膜。
經由系統化地改變沉積參數,將LSCF陰極膜沉積SDC基材上並製作成對稱電池。薄膜之微結構及表面形貌分別以XRD及SEM觀察。電化學阻抗譜技術用以量測對稱電極的介面電阻area specific resistance (ASR),在700oC 時可獲得最低之介面ASR為 0.25 Ω-cm2。
在NiO-SDC/SDC半電池上,製作並測試單層及雙層陰極之性能,單層陰極以網印法製作,雙層陰極是在SDC電解質上以ESD沉積一層LSCF膜再以網印製作另一層LSCF陰極。雙層陰極在700 oC時最大功率密度由單層陰極之1.04 提升至1.18 W/cm2, 而介面電阻ASR結果顯示, ESD雙層電極之介面阻抗為單層陰極的一半。
Ω
Abstract
In this study, deposition of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) oxide films on Gd-doped ceria (CGO) substrates by an electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method was demonstrated for the first time. The electrostatic field employed for directing the aerosol stream towards the substrate was shown to be indispensable for film deposition. The XRD result indicates that a single phase of cubic perovskite was obtained in the calcined films. SEM examination reveals that the electric field strength had a profound effect on film porosity with weaker field resulting in higher porosity. The results of impedance measurement on LSCF//CGO//LSCF cells indicate that the area specific resistance (ASR) values of current LSCF films and their activation energies are comparable to that obtained by conventional sample preparation routes. In view of the simplicity, efficiency and economy of film deposition and the sound electrochemical characteristics of the obtained films manifested in current work, it is concluded that EAUSP method is a promising method for preparation of SOFC electrode films.
Besides the EAUSP method, electrostatic spray deposition (ESD) method was also employed to deposit LSCF films. The growth mechanism of LSCF films deposited on silicon wafer was studied by examining a series of films obtained with increasing deposition durations. The results show that the film formation mechanism in the initial stage depends on the deposition temperature, and films with a unique porous structure were obtained when a deposition temperature lower than the boiling point of the precursor solution was used.
Deposition parameters were also varied systematically to deposit LSCF cathode films on CGO substrates to obtain symmetrical cells. The microstructure and morphology of obtained films were investigated by X-ray diffraction and SEM, and the area specific resistances of the symmetrical cells measured by electrochemical impedance spectroscopy (EIS). The minimum interfacial ASR value associated with the LSCF cathodes was 0.25 ohm•cm2 at700 °C.
NiO-SDC (Sm0.2Ce0.8O1.9)/SDC/LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) cells with either single
layer or double layer cathode were also fabricated and tested. The single layer LSCF cathode
was made by stencil printing while the double layer one was prepared by depositing a thin
porous layer on the SDC electrolyte by ESD before stencil printing LSCF. The maximum
power density increased from 1.04 to 1.18 Wcm-2 at 700°C when the LSCF inter-layer was
introduced. The results showed that the ASRs of the cells reduced to half with the addition of
the LSCF inter-layer.
目次 Table of Contents
Table of contents
List of Figures v
List of Tables xii
List of Tables xii
摘 要 xiv
Abstract xvi
Chapter 1 Introduction 1
1.1 What are fuel cells ? 1
1.1.1 Fuel cell Types 2
1.1.2 The solid oxide fuel cell 3
1.1.2 The solid oxide fuel cell 4
1.2 Electrode polarization of SOFC 6
1.3 The Objective of this study 14
Chapter 2 Literature review 15
2.1 Electrostatic spray deposition (ESD) method 15
2.1.2 Growth models of ESD films 21
2.2 LSCF for SOFC cathode 24
2.2.1 Lattice Structure of LSCF 24
2.2.2 Crystallography of La1-xSrxCo1-yFeyO3-δ 27
2.2.3 Thermal analysis 31
2.2.3 Electrical conductivity 35
2.3 Kinetics of cathode 40
2.4 Electrochemical impedance spectroscopy (EIS) analysis 45
2.4.2 Equivalent Circuit fitting 49
Chapter 3 Experimental procedures 54
3.1 Experimental Procedures 54
3.2 EAUSP Experimental procedure 55
3.2.1 EASUP setup 56
3.2.2 EAUSP deposition parameters 58
3.2.3 Characterization of EAUSP films 61
3.3 ESD experimental procedure 63
3.3.1 ESD system setup 65
3.3.2 ESD deposition parameters 66
3.3.3 Characterization of ESD films 71
3.4 SOFC Cell performance test 73
3.4.1 Fabrication of NiO-YSZ cermet supported half cell 73
3.4.2 Fabrication of cathode films 76
3.4.3 Cell performance test 77
Chapter 4 Results 79
4.1 EAUSP Results 79
4.1.1 Deposition of LSCF/CGO composite films on CeO2 79
4.1.2 Deposition of LSCF films on CGO 88
4.2 ESD results 96
4.2.1 TGA/DSC results of precursor solution 96
4.2.2 Deposition of LSCF films on silicon wafers 97
4.2.3 Deposition of LSCF films on SDC substrates 110
4.3 Results of cell performance test 128
4.3.1 SEM morphology 128
4.3.2 EDS analysis 132
4.3.3 AC impedance analysis 134
4.3.4 Cell performance test 137
Chapter 5 Discussion 139
5.1 EAUSP films 139
5.1.1 LSCF/CGO composite films 140
5.1.2 LSCF film deposited on CGO pellet 142
5.2 ESD films 147
5.2.1 LSCF films deposited on silicon wafer 147
5.2.2 LSCF films deposited on SDC pellet 158
5.3 SOFC performance test 160
5.3.1 SEM morphology 160
5.3.2 AC impedance analysis and cell performance test 161
Chapter 6 Conclusion 163
6.1 EAUSP 163
6.2 ESD 164
6.2.1 LSCF films deposited on silicon wafer 164
6.2.2 Deposition of LSCF films on SDC pellet 164
6.3 SOFC performance test 165
Reference 166
CURRICULUM VITAE 174
參考文獻 References
Reference
1. EG&G Technical Services, Inc “Fuel cell handbook 7th edition”, US Department of Energy, Morgantown, WV., (2004).
2. S. Basu. “Recent Trends in fuel cell science and technology” Springer, NY., (2007).
3. C. Lartge and C. Tobini, CLEFs, CEA, winter, (2000-2001).
4. S. C. SInghal and K. Kendall, “High temperature solid oxide fuel cells: Fundamentals, Design and Applications”, Elsevier. Kidlington, UK., (2003).
5. P.J. Gellings and H.J.M Bouwmeester, “The CRC handbook of solid state electrochemistry” , CRC Press, NY., (1997)
6. L.G. Coccia, G.C. Tyrrell, J.A. Kilner, D. Waller, R.J. Chater, and I.W. Boyd, Appl. Surf. Sci., 96–98 (1996) 795–801.
7. K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, Solid State Ionics, 98 (1997) 49–55.
8. G.L. Bertrand, G. Caboche, and L.-C. Dufour, Solid State Ionics, 129 (2000) 219–235.
9. H.B. Wang, J.F. Gao, D.K. Peng, and G.Y. Meng, Mater. Chem. Phys., 72 (2001) 297–300.
10. K.L. Choy, S. Charojrochkul, and B.C.H. Steele, Solid State Ionics, 96 (1997) 49–54.
11. C.H. Chen, E.M. Kelder, P.J.J.M. van der Put, and J. Schoonman, J. Mater. Chem., 6 (5) (1996) 765–771.
12. C.H. Cnen, M.H.J. Emond, E.M. Kelder, B. Meester, and J. Schoonman, J. Aerosol. Sci., 30 (7) (1999) 959–967.
13. W. Balachandran, P. Miao, and P. Xiao, J. Electrostat,. 50 (2001) 249– 263.
14. C.H. Chen, K. Nord-Varhaug, and J. Schoonman, J. Mater. Synth., Process. 4 (1996) 189–194.
15. T. Nguyen and E. Djurado, Solid State Ionics, 138 (2001) 191–197.
16. D. Perednis, K. Honegger, L.J. Gauckler, Proceedings of the Fourth European Solid Oxide Fuel Cell Forum, European Fuel Cell Forum, Lucerne, Switzerland, July 10–14 (2) (2000) 819.
17. I. Taniguichi and J. Schoonman, J. Mater. Synth., Process 10 (2002) 267–275.
18. I. Taniguichi, R.C. van Landschhoot, and J. Schoonman, Solid State Ionics, 160 (2003) 271–279.
19. I. Taniguichi, R.C. van Landschhoot, and J. Schoonman, Solid State Ionics, 156 (2003) 1–13
20. C.F.Fu, C.L. Chang, C.S. Hsu and B.H. Hwang, Materials Chemistry and Physics, 91 (2005) 28-35.
21. F.R.S. Rayleigh, Phil Mag., 14(5) (1882) 184-186.
22. C.E. Lapple In: T.B. Drew, G.R. Cokelet, J.W. Jr .Hoopes, and T. Vermeulen (eds), “Advances in chemical engineering”, vol 8. Academic Press, New York, London, (1970)
23. M. Cloupeau, and B. Prunet-Foch, J. Electrostat., 25 (1990) 165 – 184.
24. G. I. Taylor, Proc. R. Soc. London, A, A280 (1964) 383-397
25. C. H. Chen, E. M. Kelder, and J. Schoonman, J. Mater. Sci., 31 (1996) 5437-5442.
26. R. Neagu, D. Perednis, A. Princivalle and E. Djurado, Chem. Mater., 17 (2005) 902-910.
27. J. Lu, J. Chu, W.Huang and Z. Ping, Sensors and Actuators A, 108 (2003) 2-6.
28. D. Perednis, Ph.D. thesis (Diss. No. 15190), Swiss Federal Institute of Technology, Zurich, 2003.
29. J. M. Serra, S. Uhlenbruck, W. A. Meulenberg, H. P. Buchkremer, and D. Stover, Topics in Catalysis, November 40 (1-4) (2006) 123-131.
30. J.A. Lane, S.J. Benson, D. Waller and J.A. Kilner, Solid State Ionics, 121 (1990)201-208.
31. Y. Teraoka, H.M. Zhang, K. Okamoto and N. Yamazoe. Mater. Res. Bull., 23 (1988) 51-58
32. Y. Teraoka, H.M. Zhang, S. Furukawa and N. Yamazoe. Chem. Lett., (1985) 1743-1746.
33. I. Riess, Solid State Ionics, 157 ( 1-4) 2003 1-17.
Y. Matsumoto, S. Yamada, T. Nishida and E. Sato. J. Electrochem. Soc., 127 (11) (1980), 2360-2364.
34. Y. Teraoka, H.M. Zhang and N. Yamazoe. Chem. Lett., (1985), 1367-1370.
35. B.C.H. Steele, Solid State Ionics, 129 (2000) 95–110.
36. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Solid State Ionics, 76 (1995) 259–271.
37. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R.Sehlin, Solid State Ionics,76 (1995) 273–283.
38. H. Inaba, H. Tagawa, Solid State Ionics, 83 (1996) 1–16.
39. C.M. Kleinlogel, L.J. Gauckler, Solid State Ionics, 135 (2000) 567–573.
40. S. B. Adler, Chem. Rev,. 104,( 2004),4791−4843.
41. N.G. Eror and H.U. Anderson, in: “Better Ceramics through Chemistry II, eds.” C.J.
Brinker, D.E. Clark and D.R. Ulrich (Materials Research Society, (1986) 571-577.
42. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, J. of solid state chem., 118 (1995) 117-124.
43. S. J. Skinner, Int. J. Inorg. Mater., 3 (2001) 113-121.
44. O. Yamamoto, Y. Takeda, R. Kanno, and Y. Tomida, Nippon Kagaku Kaishi (1998)
1324-1329.
45. M. Godickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, Solid State Ionics, 86-88 (1996)
691-701.
46. J. A. Kilner, Bol. Soc. Esp. Ceram. Vidrio, 37 (1998) 247-255.
47. B. C. H. Steele, K. M. Hori, and S. Uchino, Solid State Ionics, 135 (2000) 445-450.
48. M. Godickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, J. Electrochem. Soc., 144 (1997)
1635-1646.
49. J. A. Lane, S. Adler, P. H. Middleton, and B. C. H. Steele, Solid Oxide Fuel Cells
(SOFC-IV); (1995) 584-96.
50. E. Maguire, B. Gharbage, F. M. B. Marques, and J. A. Labrincha, Solid State Ionics, 127
(2000) 329-335.
51. B. Rohland, Mater. Sci. Forum, 76 (1991) 149-160.
52. J. Zhang, Y. Ji, H. Gao, T. He, and J. Liu, Journal of Alloys and Compounds, 395 (2005)
322–325.
53. M. T. Colomer, B. C. H. Steele, and J. A. Kilner, Solid State Ionics, 147 (2002) 41-48.
54. B. C. H. Steele, Solid State Ionics, 94 (1997) 239-248.
55. V. Dusastre, and J. A. Kilner, Solid State Ionics, 126 (1999) 163-174.
56. W. Schafer, A. Koch, U. HeroldSchmidt, and D. Stolten, Solid State Ionics, 86-88 (1996)
1235-1239.
57. S.Wang , T. Kato , S. Nagata, T. Honda,T. Kaneko, N. Iwashita , and M. Dokiya, Solid
State Ionics 146 (2002) 203–210.
58. A. Endo, H. Fukunaga, C. Wen, and K. Yamada, Solid State Ionics, 135 (2000) 353-358.
59. S. B. Adler, Solid State Ionics, 111 (1998) 125-134.
60. E. P. Murray and S. A. Barnett, Proc. Electrochem. Soc., 99-19 (1999) 369-379.
61. M. J. Jorgensen, S. Primdahl, C. Bagger, and M. Mogensen, Solid State Ionics, 139 (2001)
1-11.
62. M. J. Jorgensen and M. Mogensen, J. Electrochem. Soc., 148 (2001) A433-A442.
63. P. Holtappels, J. Bradley, J. T. S. Irvine, A. Kaiser, and M. Mogensen, Journal of The
Electrochemical Society, 148 (8) (2001) A923-A929.
64. E. P. Murray and S. A. Barnett, Solid State Ionics, 143 (2001) 265-273.
65. A. Barbucci, R. Bozzo, G. Cerisola, and P. Costamagna, Electrochim.Acta, 47 (2002)
2183-2188.
66. S. Kim, Y. L. Yang, A. J. Jacobson, and B. Abeles, Solid State Ionics, 121 (1-4) (1999)
31-36.
67. A.J. Bard and L. Faulkner, “Electrochemical Methods. Fundamentals and Applications”,
Wiley, NY, (1980)
68. R. Rodgers, Research solution and resource, http://www.consultrsr.com/resources/eis/
69. C. Gabrielli, “Identification of electrochemical processes by frequency response analysis”,
Paris Cedex, France, (1998)
70. X. Zhang , M. Robertson, C. Dec`es-Petit, Y. Xie, R. Hui,S. Yick, E. Styles, J. Roller, O.
Kesler, R. Maric, D. Ghosh, Journal of Power Sources 161 (2006) 301–307.
71. 8. W. G. Wang and M. Mogensen, Solid State Ionics, 176, 457 (2005).
72. 9. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Solid State Ionics, 170, 9 (2004).
73. 15. E. P. Murray, M. J. Sever and S. A. Barnett, Solid State Ionics, 148, 27 (2002).
74. C. C. Chen, M. M. Nasrallah and H. U. Anderson, in Proc. of the 3rd international
Symposium on SOFC, The Electrochemical Soc. 93-4 (1993) 598-612
75. B. C. H. Steele and J. M. Bae, Solid State Ionics, 106 (1998) 255-261.
76. M. Sahibzada, S. J. Benson, K. Zheng, R. A. Rudkin, and J. A. Kilner, Solid state Ionics,
113-115 (1998) 285-290.
77. H. Zhao, L. Huo, L. Sun, L. Yu, S. Gao, and J. Zhao, Mat. Chem. Phys., 88 (2004) 160-166.
78. J. Cross, “Electrostatics: Principle, Problems and Application”, IOP, (1987)
79. V. Dusastre and J. A. Kilner, Solid State Ionics, 126, (1999) 163-174.
80. E. P. Murray, M. J. Sever, and S. A. Barnett, Solid State Ionics, 148 (2002) 27-34.
81. D. Waller, J. A. Lane, J. A. Kilner, and B. C. H. Steele, Solid State Ionics, 86-88 (1996)
767-772.
82. J. D. Bernardin, C.J. Stebbins, and I. Mudawar, Int. J. Heat Mass Transfer, 40 (2) (1996)
247-267.
83. Z. Zapalowicz, Int. Comm. Heat Mass Transfer, 22 (5) (1995) 713-720.
84. J. D. Bernardin and I. Mudawar, Transactions of the ASME, 126 (2004) 272-278.
85. J. D. Bernardin, C.J. Stebbins, and I. Mudawar, Int. J. Heat Mass Transfer, 40 (1) (1997)
73-88.
86. A. Karl and A. Frohn, Physics of Fluids, 12 (4) (2000) 785-796.
87. D.J.E. Harvie and D.F. Fletcher, Int. J. Heat Mass Transfer, 44 (2001) 2633-2642.
88. D.J.E. Harvie and D.F. Fletcher, Int. J. Heat Mass Transfer, 44 (2001) 2643-2659.
89. T. Takashima and H. Shiota, Heat transfer-Asian Research, 34 (7) (2005) 527-537.
90. A.L.N. Moreira, A.S. Moita, E. Cossali, M. Marengo, and M. Santini, Exp Fluids, 43
(2007) 297-313.
91. E.F. Crafton and W.Z. Black, Int. J. Heat Mass Transfer, 47 (2004) 1187-1200.
92. W. Jia and H. Qiu, Int .J. Heat Mass Transfer, 45 (2002) 4141-4150.
93. R. Bhardwaj, J.P. Longtin and D. Attinger, Int .J. Heat Mass Transfer, 50 (2007)
2912-2923.
94. J.-G. Fan and F.-P. Zhao, Applied Physics Letter, 90 (2007) 013102.
95. S. Basu and B.M. Cetegen, Int .J. Heat Mass Transfer, 50(2007) 3278-3290.
96. M. Sase, J. Suzuki, K. Yashiro, T. Otake, A. Kaimai and T. Kawada, J. Mizusaki and H.
Yugami, Solid State Ionics, 177 (19-25) (2006) 1961-1964 .
97. F. S. Baumann, J. Fleig, H. U. Habermeier and J. Maier, Solid State Ionics, 177 (11-12)
(2006) 1071-1081 .
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code