Responsive image
博碩士論文 etd-0729108-112850 詳細資訊
Title page for etd-0729108-112850
論文名稱
Title
交連線與佈局導向多掃描樹合成演算法
Interconnect-Driven Layout-Aware Multiple Scan Tree Synthesis Simultaneously for Test Time, Compression and Routing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-05-25
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
可測試性設計、測試合成、多掃描樹、測試資料壓縮
Design for Testability, Test Synthesis, Test Data Compression, Multiple Scan Tree
統計
Statistics
本論文已被瀏覽 5620 次,被下載 0
The thesis/dissertation has been browsed 5620 times, has been downloaded 0 times.
中文摘要
本論文提出以繞線為考量之多掃描樹合成演算法。多掃描樹(Multiple Scan Tree)測試架構可有效地降低SoC 測試所需之測試資料量(Test Data Volume)與測試時間(Test Application Time)。然而,在過去與多掃描樹合成演算法相關的研究中卻鮮少考量掃描樹所需耗費之繞線距離,使合成之掃描樹耗費過長的繞線距離。本論文提出之多掃描樹合成演算法有效地將測試資料之壓縮率與繞線距離同時納入考量,使合成之多掃描樹與過去相比有著較佳的繞線結果。在演算法中,首先以提出之密度導向叢集演算法動態地決定每個掃描細胞所在之掃描樹。接著利用樹狀搜尋(Tree Search)演算法找尋相容群。最後利用Voronoi diagram 建立掃描細胞之間的連接。與過去的研究相比,提出之演算法成功地提升1.4 到2.1 倍之測試資料壓縮率,並且節省15.9 到24.6 倍之測試時間。更重要的是本論文提出之演算法成功地
節省了1.3 到3.2 倍之繞線長度。
Abstract
An interconnect-driven layout-aware multiple scan tree synthesis methodology is proposed in this paper. Multiple scan trees, also known as a scan forest, greatly reduce test data volume and test application time in SOC testing. However, previous researches
on scan tree synthesis rarely considered routing length issues, and hence create scan trees with excessively long routing paths. The proposed algorithm effectively considers both test compression rate and routing length and hence produces better results than all
previous known methods in both regards. In this method, a density-driven dynamic clustering algorithm is applied to determine scan cells in each scan tree. A compatibility based clique partition algorithm is used to determine tree topology, and then a Voronoi diagram is used to establish physical connections. Compared with previous works on
scan tree synthesis, the proposed method reduces test data volume by 1.4X to 2.1X, while the reduction in test application time ranges from 15.9X to 24.6X. The significant improvement in test application time is mainly due to the multiple scan trees architecture. The final routing structure is also better, as 1.3X to 3.2X reduction in routing length is achieved.
目次 Table of Contents
CHAPTER 1. Introduction ........................................................................................ 1
1.1 MOTIVATION ............................................................................................................................1
1.2 OUTLINE OF THE THESIS .........................................................................................................3
CHAPTER 2. Preliminaries ....................................................................................... 4
2.1 TEST VECTOR COMPATIBILITY IN SINGLE SCAN CHAIN ........................................................4
2.2 TEST VECTOR COMPATIBILITY IN SCAN TREE ARCHITECTURE............................................6
2.3 SCAN TREE WITH INVERSE COMPATIBILITY ..........................................................................7
2.4 STRUCTURAL COMPATIBILITY ................................................................................................8
2.5 A COMPLETE AND BALANCED SCAN TREE .............................................................................9
CHAPTER 3. A Five-Phase Multiple Scan Tree Construction Algorithm for Test
Compression, Application Time and Routing ........................................... 11
3.1 DENSITY-BASED ADAPTIVE CLUSTERING (DAC) ................................................................. 11
3.2 COMPATIBILITY GROUP CONSTRUCTION ALGORITHM (CGC ALGORITHM) ..................... 14
3.3 COMPATIBILITY CLIQUE ASSIGNMENT ALGORITHM (CCA ALGORITHM) ......................... 18
3.4 VORONOI SCAN TREE CONSTRUCTION (VSTC) ALGORITHM ............................................. 21
3.5 GLOBAL BALANCING VIA SCAN SEGMENT INSERTION ......................................................... 27
3.6 LAYOUT-AWARE SCAN TREE CONSTRUCTION FLOW .......................................................... 31
CHAPTER 4. Experimental Results ....................................................................... 33
CHAPTER 5. Conclusions ....................................................................................... 39
References ...................................................................................................................... 40
參考文獻 References
References
[1] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time reduction
through scan chain concealment,” in Proc. Design Automation Conf., June 2001,
pp. 151-155.
[2] S. Banerjee, D.R. Chowdhury, B.B. Bhattacharya, ”An efficient scan tree design
for compact test pattern set,” IEEE Trans. Comput.-Aided Deign., vol. 26, no. 7,
pp. 1331-1339, 2007.
[3] Y. Bonhomme, et. al. “An efficient scan tree design for test time reduction,” in
Proc. European Test Symp., 2004, pp. 174-179.
[4] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and
decompression architectures based on Golomb codes,” IEEE Trans. Comput.-
Aided Design, vol. 20, no. 3, pp. 355-368, 2001.
[5] A. Chandra and K. Chakrabarty, “Test data compression and test resource
partitioning for system-on-a-chip using frequency-directed run-length (FDR)
codes,” IEEE Trans. Computers, vol. 52, no. 8, pp. 1076-1088, 2003.
[6] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational circuits,” IEEE
Trans. Comput.-Aided Design, vol. 14, no. 11, pp. 1370-1378, 1995.
[7] I. Hamzaoglu and J.H. Patel, “Test set compaction algorithms for combinational
circuits,” in Proc. Int. Conf. Comput.-Aided Design., pp. 283-289, Nov. 1998.
[8] I. Hamzaoglu and J.H. Patel, “Reducing test application time for full scan
embedded cores,” in Proc. Int. Symp. on Fault-Tolerant Computing, July 1999, pp.
260-267.
[9] A. Jas, J. Ghosh-Dastidar, M. Ng, and N.A. Touba, “An efficient test vector
compression scheme using selective Huffman coding,” IEEE Trans. Comput.-
Aided Design, vol. 22, no. 6, pp. 797-806, 2003.
[10] A. Jas and N.A. Touba, “Test vector compression via cyclical scan chains and its
application to testing core-based designs,” in Proc. Int’l Test Conf., Oct. 1998, pp.
458-464.
[11] B. Könemann, “LFSR-coded test patterns for scan design,” in Proc. European
Test Cof., pp. 237-242, Apr. 1991,.
[12] S. Kajihara and K. Miyase, “On identifying don't care inputs of test patterns for
combinational circuits,” in Proc. Int. Conf. on Computer Aided Design, pp. 364-
369, 2001.
[13] R. C.-T. Lee, R.-C. Chang, S.-S. Tseng, and Y.-T. Tsai, Introduction to the
Design and Analysis of Algorithms, a Strategic Approach, McGrawHill, 2005.
[14] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Broadcasting test patterns to multiple
circuits,” IEEE Trans. Comput.-Aided Design, vol. 18, no. 12, pp. 1793-1802,
1999.
[15] K. Miyase and S. Kajihara, “Optimal scan tree construction with test vector
modification for test compression,” in Proc. IEEE Asian Test Symp, 2003, pp.
136-141.
[16] K. Miyase, S. Kajihara, and S. M. Reddy, “Multiple scan tree design with test
vector modification,” in Proc. IEEE Asian Test Symp., Nov. 2004, pp.76-81.
[17] S.M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data volume
reduction for multiple scan chain designs,” in Proc. IEEE VLSI Test Symp., Apr.
2002, pp. 103-108.
[18] P.-C. Tsai and S.-J. Wang, “Multi-mode-segmented scan architecture with layoutaware
scan chain routing for test data and test time reduction,” IET Comput. Digit.
Tech., 2008.
[19] S.-J. Wang, X.-L. Li, and K. S.-M. Li, “Layout-aware multi-layer multi-level scan
tree synthesis,” in Proc.IEEE Asian Test Symp., Nov. 2007, pp. 129-132.
[20] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures, Morgan
Kaufmann Publishers, 2006.
[21] D. Xiang, S. Gu, J.-G. Sun, and Y.-L. Wu, “A cost-effective scan architecture for
scan testing with nonscan test power and test application cost,” in Proc. Design
Automation Conf., 2003, pp. 744-747.
[22] D. Xiang, K. Li, J. Sun, and H. Fujiwara, “Reconfigured scan forest for test
application cost, test data volume, and test power reduction,” IEEE Trans.
Compuers, vol. 56, no. 4, pp. 557-562, Apr. 2007.
[23] A.-M. Yip, C. Ding, and T.F. Chan, “Dynamic cluster formation using level set
methods,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no.
6, pp. 877-889, 2006.
[24] H. Yotsuyanagi, T. Kuchii, S. Nishikawa, M. Hashizume, and K. Kinoshita,
“Reducing scan shifts using configurations of compatible and folding scan trees,”
J. Electronic Testing, vol. 21, no. 6, pp. 613-620, Dec. 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.66.151
論文開放下載的時間是 校外不公開

Your IP address is 18.220.66.151
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code