Responsive image
博碩士論文 etd-0729108-124753 詳細資訊
Title page for etd-0729108-124753
論文名稱
Title
能量、啾頻、波長控制泵-探量測技術在飽和布拉格反射鏡之研究
A study of Excitation dynamics of Strained Saturable Bragg Reflector by Chirped Control Pump-Probe Measurement Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-01
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
超短脈衝雷射、飽和布拉格反射鏡
pump-probe, SBR
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
本論文架構了一套包含脈衝整型系統來提供啾頻控制的泵-探量系統,並且在改變聚焦鏡以大幅提升激發光的能量密度來做能量密度的相關性量測。同時,利用泵-探量技術來量測飽和布拉格反射鏡在高、低能量激發和不同啾頻、不同波長的脈衝,來進行量測,得到反射率、脈衝寬度和振幅比值的改變,藉由此量測來研究飽和布拉格反射鏡,對不同能量、啾頻和波長的相關性,瞭解在這些因素下的載子動力學對鎖模之貢獻,並對鎖模共振腔設計中透過色散的分配提出可增強鎖模力量的觀點。
  由實驗結果顯示,飽和布拉格反射鏡在啾頻 -25000 fs^2、光能量密度增大(2 ->12 μm/cm^2 )的時候有比較短的快速載子生命期和比較小的振幅比值,印證了脈衝整形因子在實驗結果上,有較強的脈衝壓縮力量,這些都顯示出啾頻 -25000 fs^2 有最有效率、最穩定的鎖模調控條件;而能量密度越接近飽和能量密度的三倍時顯示出來也有較好的調控結果,這也提供了最佳鎖模使用的能量密度條件。另外比較波長 800 nm 和 780 nm 實驗結果, 800 nm 比 780 nm 對鎖模有較小的快速載子生命期和較小的振幅比值,我們認為在扭曲式飽和布拉格反射鏡( Strained Staurable Bragg Reflector ),波長 800 nm 比 780 nm 容易鎖模且產生的脈衝寬度也比較短。
Abstract
In this thesis, a chirp-controlled pump-probe system has been developed to investigate the role of chirp in mode-locking mechanism. By modulating pump power and focusing condition, power, chirp, and wavelength dependent transient reflectivity ( ΔR /R), pulse duration, and amplitude ratio in pump-probe measurement for the multiply-strained-quantum-well saturable Bragg reflector (SSBR) are presented. According this study, one can find a more efficient and stable mode-locking mechanism through proper chirp arrangement inside cavity.
Compared to the case of transform-limited pump condition, shorter fast-carrier-lifetime and smaller amplitude ratio of slow and fast relaxation contribution are observed in negative chirp excitation condition. Meanwhile, we can see that there is a shorter fast-carrier-lifetime and a smaller amplitude ratio in case of excitation pulse with -25000 ( fs^2 ) chirp or increasing fluence (2 μm/cm^2->12 μm/cm^2 ). The results show that the pulse compression strength is stronger in -25000 ( fs^2 ) chirp and full with the tendency demonstrated by pulse shaping factor. All of these experimental results show that -25000 ( fs^2 ) chirp is the best chirped control condition to make mode-locking more efficient and stable. In addition, with the increasing fluence (2 ->12 μm/cm^2 ), three times of saturable fluence, a more stable and efficient mode-locking condition is expectable.
目次 Table of Contents
摘要 III
ABSTRACT V
目錄 VIII
第一章 緒論 1
1.1 引言 1
1.2 研究動機與構想 3
第二章 飽和布拉格反射鏡在鎖模雷射應用和原理 6
2.1 鎖模雷射原理 6
2.1.1 主動式鎖模 6
2.1.2 被動式鎖模 9
2.2 飽和布拉格反射鏡簡介 14
2.3 飽和布拉格反射鏡的脈衝整形因子 20
第三章 泵-探量測技術系統和脈衝整型系統原理 23
3.1 脈衝整型系統 23
3.1.1 脈衝整型系統原理和架構 23
3.1.2 自相關儀和互相關儀簡介 28
3.1.3 啾頻控制 32
3.2 時間解析反射式泵探量測原理簡介和系統架構 34
3.2.1 時間解析反射式泵-探量測原理簡介 34
3.2.2 時間解析反射式泵-探量測系統架構 41
3.3 實驗步驟 47
第四章 不同激發能量密度實驗結果與分析 49
4.1 理論分析 49
4.2 不同激發能量密度下,反射率的變化 55
4.3 不同激發能量密度下,載子生命期的變化 65
4.3.1 快速載子生命期 67
4.3.2 慢速載子生命期 71
4.4 不同激發能量密度下,振幅比值的變化 75
第五章 不同波長實驗結果與分析 81
5.1 理論分析 81
5.2 不同波長下,反射率的變化 83
5.3 不同波長下,載子生命期的變化 86
5.3.1 快速載子生命期 86
5.3.2 慢速載子生命期 90
5.4 不同波長下,振幅比值的變化 93
第六章 結論與未來展望 97
參考文獻 99
參考文獻 References
[01] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 1, 4-5 (1964).
[02] See for example, Proceedings of the Toical Mttings on Advanced Solid State Lasers, Opt. Soc. Am.(1994, 1995)
[03] J. Mark, L.Y. Liu, K. L. Hall, H. A. Haus, and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett. 14, 1, 48-50 (1989).
[04] G. Dube, L. Chase, Livermore, and C. A, “OSA Proceedings on Advanced Solid-State Lasers,” Meeting sponsored by OSA and IEEE. Washington, DC, Opt. Soc. Am. 10, 120-124 (1991).
[05] U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti: sapphire laser,” Opt. Lett. 15, 23, 1377-1379 (1990).
[06] S. Tsuds, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunninjham, “Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors,” IEEE, J. Sel. Topics in Quantum Electronics. 2, 3, 454-464 (1996).
[07] J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang. C. L. Pan, and K. F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO laser with a saturable Bragg reflector,” Appl. Opt. 42, 27, 5496-5499 (2003).
[08] L. Krainer, R. Paschotta, J. Aus der Au, C. Honninger, U. Keller, M. Moser, D. Kopf, and K. J. Weingarten, “Passively mode-locked Nd:GdVO laser with up to 13 GHz repetition rate,” Appl. Phys. B. 69, 3, 245-247 (1999).
[09] C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B. 16, 1, 46-56 (1999).
[10] F. X. Kartner, Juerg Aus der Au, U. Keller, “Mode-Locking with Slow and Fast Saturable Absorbers - What’s the Difference?,” Member, IEEE. J. Select. Topics Quantum Electronics. 4, 2, 159-168 (1998).
[11] M. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hansch, and A. Manescau “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. Roy. Astron. Soc. 380, 839-847 (2007).
[12] D. A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” The European Physical Journal D. 48, 1, 57-66 (2008).
[13] J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express. 14, 13, 5968-5974 (2006).
[14] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D, Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An Optical Clock Based on a Single Trapped Ion,” Science Express , 293, 5531, 825-828 (2001).
[15] A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 6, 667-669 (2005).
[16] Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express. 13, 25, 10431-10439 (2005)
[17] A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser with >1 mW of power per frequency comb mode,” CLEO2008 CPDB10. Jan Jose, USA (2008)
[18] L. Yan, and S. Han, “Passive mode locking of inhomogeneously broadened lasers,” J. Opt. Soc. Am. B. 24, 9, 2108-2118 (2007).
[19] Y. Chen, F. X. Kartner, U, Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B. 16, 11, 1999-2004 (1999).
[20] M. V. Tognetti, M. N. Miranda, and H. M. Cerspo, “Dispersion-managed mode-locking dynamics in a Ti:sapphire laser,” Physical Review A. 74, 033809 (2006).
[21] J. C. Wang, C. K. Sun, J. K. Wang, “Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror,” Appl. Phys. Lett. 89, 231106 (2006).
[22] 許家誠 “利用脈衝整型技術在飽和布拉格反射鏡之激發動力學之研究” 國立中山大學光電工程研究所 碩士論文 2006 年 7 月。

[23] 謝嘉民 “皮秒與飛秒被動鎖模鈦藍寶石雷射之脈衝形成動力學理論與實驗之研究” 國立交通大學光電工程研究所博士論文,1997 年 9 月。
[24] U. Keller, J. A. Valdmanis, M. C. Nuss, and A. M. Johnson, “53 ps pulses at 1.32 μm from a harmonic mode-locked Nd:YAG laser,” IEEE. J. Quantum Electron. 24, 2, 427-430 (1988).
[25] 嚴立, “Mode Locking of Inhomogeneously Broadened Lasers” 中山大學演講投影片 (2008).
[26] U. Keller, K. J. Weingarten, F. X.. Krtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and Juerg Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecondto nanosecond pulse generation in solid-state lasers,” IEEE. J. Select. Topics Quantum Electron. 2, 3, 435-453 (1996).
[27] I. D. Jung, F. X. Krtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, and U. Keller, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt.Lett. 22, 13,1009-1011 (1997).
[28] T, W. H. Knox, E. A. de Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 12, 1406-1408 (1995).
[29] U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15, 23, 1377-1379 (1990).
[30] A. Haus, U. Keller and W. H. Knox, “Theory of coupled-cavity mode locking with a resonant nonlinearity,” J. Opt. Soc. Am. B. 8, 6, 1251-1258 (1991).
[31] T. A. Liu, J. M. Shieh, K. F. Huang and C. L. Pan, “Optical Nonlinearity and Ultrafast-Carrier Dynamics of a Strained Quantum-Well Saturable Bragg Reflector,” Jpn. J. Appl. Phys. 42, 5869-5873 (2003).
[32] C. K. Lee, T. A. Liu, K. F. Huang and C. L. Pan, “Frequency Resolved Optical Gating Studies of Strained Saturable Bragg Reflector: Anomalous Dispersion near Resonance Absorption of the Exciton Resonance,” Jpn. J. Appl. Phys. 44, 9A, 2005, 6553–6557 (2005).
[33] T. H. Wu, A thesis submitted to department of photonics & institute of Electro-Optical engineering college of electrical engineering National Chiao Tung university (2005).
[34] C. J. Chuang, A thesis submitted to department of photonics & institute of Electro-Optical engineering college of electrical engineering National Chiao Tung university (2005).
[35] 丁濟民 “近場之雙光子吸收光致電流對二極體元件之量測” 國立交通大學光電工程研究所 碩士論文 1999 年 6 月。
[36] 羅志偉 “以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學” 國立交通大學電子物理系, 2003 年 10 月。
[37] 洪勝富、齊正中 “時間解析激發-探測技術”,物理雙月刊,二十卷五期, 1998 年 10 月。
[38] K. Sakai and M. Tani, “Terahertz Optoelectronics,” J. Oyo Butsuri. 70, 2, 149-155 (2001).
[39] J. Shah, “Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures”, Springer (1999).
[40] 黃俊凱 “ 氧離子佈植砷化鎵之載子動力學研究 ” 國立中山大學光電工程研究所 碩士論文 民國 2008 年 4 月
[41] A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, and D. T. Mclnturff, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 13, 1331-1333 (1990).
[42] J. M. Shieh, T. C. Huang, K. F. Huang, C. L. Wang, and C. L. Pan, “Broadly tunable self-starting passively mode-locked Ti:sapphire laser with triple-strained quantum-well saturable Bragg reflector,” Optics Communications, 156, 53-57 (1998).
[43] W. H. Knox, D. S. Chemla, and D. A. B. Miller, “Femtosecond ac Stark Effect in Semiconductor Quantum Wells: Extreme Low- and High-Intensity Limits,” Physical Review Lett. 62, 10, 1189-1192 (1989).
[44] P. Langlois, M. Joschko, E. R. Thoen, E. M. Koontx, F. X. Kartner, E. P. Ippen, and L. A. Kolodziejski, “High fluence ultrafast dynamics of semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 75, 24,3841-3843 (1999).
[45] M. Joschko, P. Langlois, E .R. Thoen, E.M. Koontz, E. P. Ippen, and L. A. Kolodziejski, “Ultrafast hot-carrier dynamics in semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 76, 11, 1383-1385 (2000).
[46] M. Livingstone, I. Galbraith, and B. S. Wherrett, “Comparison of optical nonlinearities in piezoelectric strained [111]-and [001]-grown (In,Ga)As/(Al,Ga)As quantum wells,” Appl. Phys. Lett. 65, 22, 28, 2771-2773 (1994).
[47] M. Lindberg, and S. W. Koch, “Transient oscillations and dynamic Stark effect in semiconductors,” Physical Review B, 38, 11, 7607-7614 (1988).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.114.94
論文開放下載的時間是 校外不公開

Your IP address is 3.138.114.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code