Responsive image
博碩士論文 etd-0729108-145929 詳細資訊
Title page for etd-0729108-145929
論文名稱
Title
利用LS-SVM 抑制NLOS 誤差之超寬頻TOA 無線定位
TOA Wireless Location Algorithm with NLOS Mitigation Based on LS-SVM in UWB Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-26
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
最小平方支援向量機、訊號抵達時間、無線定位、非直視路徑、超寬頻、粒子群最佳化演算法
TOA, particle swarm optimization (PSO), wireless location, UWB, NLOS, least squares-support vector machine (LS-SVM)
統計
Statistics
本論文已被瀏覽 5674 次,被下載 2
The thesis/dissertation has been browsed 5674 times, has been downloaded 2 times.
中文摘要
在定位演算法之中,影響定位精準度的因素有幾種,其中以非直視路徑 (Non-Line of Sight,NLOS) 誤差影響最鉅。當行動台與基地台訊號傳輸路徑上有障礙物或建築物阻隔時,會造成訊號抵達時間的延遲,因此使得訊號抵達時間產生正向偏移誤差,當我們利用此含有 NLOS 誤差資訊做定位時,便會使得系統的定位精準度大大降低。本文提出抑制 NLOS 誤差的訊號抵達時間 (Time of Arrival,TOA) 定位演算法,首先利用最小平方支援向量機 (Least Squares-Support Vector Machine,LS-SVM)搭配粒子群最佳化演算法 (Particle Swarm Optimization,PSO),進行參數最佳化選擇並建立訊號傳播距離估測模型。接著利用已建立的距離估測模型估測行動台與基地台之間的距離,此估測的距離能有效的降低 NLOS 誤差。再來以估測距離與量測距離之間的差値給定適當權重因子値,之後定義出權重型目標函數,最後利用最佳化演算法,可以針對權重型目標函數進行行動台位置之最佳估測,有效的縮小定位誤差範圍,進而提高定位精確度。針對超寬頻 (Ultra-Wideband,UWB) 環境,電腦模擬結果可知,利用 LS-SVM 與 PSO 的距離估測能有效抑制 NLOS 所造成的量測距離之誤差,其距離估測值能接近真實傳播距離並且比起量測距離在統計特性上之平均值與變異數都有較好的表現。且藉由結合 LS-SVM 與 PSO 的距離估測以及權重型目標函數最佳化的定位演算法架構,在ㄧ個或多個基地台遭受 NLOS 傳播影響的情形之下,能有效降低 NLOS 距離誤差,達到提高定位的精準度的目的。
Abstract
One of the major problems encountered in wireless location is the effect caused by non-line of sight (NLOS) propagation. When the direct path from the mobile station (MS) to base stations (BSs) is blocked by obstacles or buildings, the signal arrival times will delay. That will make the signal measurements include an error due to the excess path propagation. If we use the NLOS signal measurements for localization, that will make the system localization performance reduce greatly. In the thesis, a time-of-arrival (TOA) based location system with NLOS mitigation algorithm is proposed. The proposed method uses least squares-support vector machine (LS-SVM) with optimal parameters selection by particle swarm optimization (PSO) for establishing regression model, which is used in the estimation of propagation distances and reduction of the NLOS propagation errors. By using a weighted objective function, the estimation results of the distances are combined with suitable weight factors, which are derived from the differences between the estimated measurements and the measured measurements. By applying the optimality of the weighted objection function, the method is capable of mitigating the NLOS effects and reducing the propagation range errors. Computer simulation results in ultra-wideband (UWB) environments show that the proposed NLOS mitigation algorithm can reduce the mean and variance of the NLOS measurements efficiently. The proposed method outperforms other methods in improving localization accuracy under different NLOS conditions.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 論文結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 LS-SVM 抑制非視線誤差之TOA 定位演算法. . . . . . . . . . . . . . . . 5
2.1 最小平方支援向量機(LS-SVM) 回歸模型. . . . . . . . . . . . . . . . 6
2.2 粒子群最佳化(PSO) 演算法. . . . . . . . . . . . . . . . . . . . . . . 7
2.3 LS-SVM 抑制非視線誤差演算法. . . . . . . . . . . . . . . . . . . . . 11
2.3.1 LS-SVM 距離估測模型之建立. . . . . . . . . . . . . . . . . . 11
2.3.2 PSO 參數最佳化之LS-SVM 回歸模型. . . . . . . . . . . . . 17
2.3.3 利用LS-SVM 模型抑制NLOS 誤差之距離估測法. . . . . . . 19
2.4 權重型目標函數定位法. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 權重型目標函數. . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 權重因子給定法. . . . . . . . . . . . . . . . . . . . . . . . . 21
3 電腦模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 超寬頻訊號模型與相關參數設定. . . . . . . . . . . . . . . . . . . . . 25
3.1.1 超寬頻訊號模型. . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 PSO 參數設定. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 抑制非視線傳播距離誤差之模擬. . . . . . . . . . . . . . . . . . . . . 27
3.2.1 模擬二個基地台所量測TOA 有NLOS 誤差情況. . . . . . . . 30
3.2.2 模擬ㄧ個基地台所量測TOA 有NLOS 誤差情況. . . . . . . . 32
3.2.3 模擬所有基地台所量測TOA 皆有NLOS 誤差情況. . . . . . . 39
3.2.4 模擬所有基地台所量測TOA 皆無NLOS 誤差情況. . . . . . . 43
3.3 具非視線誤差抑制定位之模擬. . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 使用不同數目訓練資料之定位模擬. . . . . . . . . . . . . . . . 47
3.3.2 具非視線誤差抑制之多基地台定位之模擬. . . . . . . . . . . . 47
4 結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
參考文獻 References
[1] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Magazine, vol. 4, no. 2, pp. 36–47, 2003.
[2] M. P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of the IEEE International Conference on Universal Personal Communications, vol. 2, Oct. 1996, pp. 827 – 831.
[3] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of the IEEE Wireless Communications and Networking, vol. 3, no. 1969–1973 vol.3, March 2003, pp. 1969–1973.
[4] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in TDOA mobile location,” in Proceedings of the IEEE Global Telecommunications Conference,
vol. 1, 2001, pp. 680–684.
[5] ——, “Nonline-of-sight error mitigation in mobile location,” IEEE Transactions on Wireless Communications, vol. 4, no. 2, pp. 560–573, 2005.
[6] Y.-T. Chan, W.-Y. Tsui, H.-C. So, and P.-C. Ching, “Time-of-arrival based localization under NLOS conditions,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp. 17–24, 2006.
[7] C. Ma, R. Klukas, and G. Lachapelle, “A nonline-of-sight error-mitigation method for TOA measurements,” IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 641–651, March 2007.
[8] Y. He, H.-Y. Hu, and S. Zhou, “A TOA based believable factor mobile location algorithm,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, no. 2840, March 2004, pp. 260–263.
[9] C.-D. Wann and H.-C. Chin, “Hybrid TOA/RSSI wireless location with unconstrained nonlinear optimization for indoor UWB channels,” in Proceedings of the IEEE Wireless Communications and Networking Conference, March 2007, pp. 3940–3945.
[10] S. Al-Jazzar, J. Caffery Jr., and H.-R. You, “A scattering model based approach to NLOS mitigation in TOA location systems,” in Proceedings of the IEEE
Vehicular Technology Conference, vol. 2, 6-9 May 2002, pp. 861 – 865.
[11] S. Al-Jazzar and J. Caffery Jr., “ML and Bayesian TOA location estimators for NLOS environments,” in Proceedings of the IEEE Vehicular Technology
Conference, vol. 2, 24-28 Sept. 2002, pp. 1178 – 1181.
[12] S. Venkatraman, J. Caffery Jr., and H.-R. You, “A novel TOA location algorithm using LOS range estimation for NLOS environments,” IEEE Transactions on Vehicular Technology, vol. 53, pp. 1515 –1524, Sept. 2004.
[13] S. Al-Jazzar and J. Caffery Jr., “NLOS mitigation method for urban environments,” in Proceedings of the IEEE Vehicular Technology Conference, vol. 7,
26-29 Sept. 2004, pp. 5112 – 5115.
[14] J.-F. Liao and B.-S. Chen, “Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3002–3006, November 2006.
[15] G. Sun and W. Guo, “Robust mobile geo-location algorithm based on LSSVM,” IEEE Transactions on Vehicular Technology, vol. 54, pp. 1037–1041, May 2005.
[16] W. Wang, J.-Y. Huang, Q. Wan, and W.-L. Yang, “Location of mobile terminals based on LS-SVM with survey points in NLOS environment,” in Proceedings of the 9th International Conference on Telecommunications, June 2007, pp. 307–310.
[17] B. Baesens, S. Viaene, T. Van Gestel, J. A. K. Suykens, G. Dedene, B. De Moor, and J. Vanthienen, “An empirical assessment of kernel type performance for least squares support vector machine classifiers,” in Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, vol. 1, no. 313–316 vol.1, 2000, pp. 313–316.
[18] J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle, Least squares support vector machines. River Edge, NJ:World Scientific, 2002.
[19] J. A. K. Suykens, T. Van Gestel, J. Vandewalle, and B. De Moor, “A support vector machine formulation to PCA analysis and its kernel version,” IEEE Transactions on Neural Networks, vol. 14, no. 2, pp. 447–450, March 2003.
[20] T. Van Gestel, B. Baesens, J. A. K. Suykens, M. Espinoza, D.-E. Baestaens, J. Vanthienen, and B. De Moor, “Bankruptcy prediction with least squares
support vector machine classifiers,” in Proceedings of the IEEE International Conference on Computational Intelligence for Financial Engineering, March 2003, pp. 1–8.
[21] B. J. de Kruif and T. J. A. de Vries, “Pruning error minimization in least squares support vector machines,” IEEE Transactions on Neural Networks, vol. 14, no. 3, pp. 696–702, 2003.
[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, no. 1942–1948 vol.4, Dec. 1995, pp. 1942–1948.
[23] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”in Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, Oct. 1995, pp. 39–43.
[24] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation, May 1998, pp. 69–73.
[25] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, vol. 1, no. 84–88 vol.1, July 2000, pp. 84–88.
[26] ——, “Guest editorial special issue on particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 201–203, 2004.
[27] R. J. Schilling and S. L. Harris, Applied numerical methods for engineers using Matlab and C. Brooks/cole, 2000.
[28] L. Davis, Handbook of genetic algorithm. New York: Van Nostrand Reinhold, 1991.
[29] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines. Cambridge University Press, 2000.
[30] R. Fletcher, Practical methods of optimization, 2nd ed. New York: Wiley, 2000.
[31] J. Mercer, “Functions of positive and negative type and their connection with the theory of integral equations,” Philosophy Transactions on Royal Society in London, pp. 415–446, 1909.
[32] S. M. Kay, Fundamentals of statistical signal processing: Estimation Theory. New Jersey: Prentice Hall, 1993, vol. 1.
[33] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Boston: Pearson Addison Wesley, 2005.
[34] B.-h. Lee, S.-u. Kim, J.-w. Seok, and S. Won, “Nonlinear system identification based on support vector machine using particle swarm optimization,” in Proceedings of the SICE-ICASE International Joint Conference, Oct. 2006, pp. 5614–5618.
[35] S. Guo and T. Jiang, “Cost prediction of equipment system using LS-SVM with PSO,” in Proceedings of the International Conference on Wireless Communications Networking and Mobile Computing, Sept. 2007, pp. 5285–5288.
[36] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, Feb. 1987.
[37] J. Caffery, Jr., “A new approach to the geometry of TOA location,” in Proceedings of the IEEE Vehicular Technology Conference, vol. 4, September 2000, pp. 1943–1949.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.8.247
論文開放下載的時間是 校外不公開

Your IP address is 3.141.8.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code