Responsive image
博碩士論文 etd-0729108-175145 詳細資訊
Title page for etd-0729108-175145
論文名稱
Title
脈衝雷射剝蝕凝聚ZnO/Zn之擬磊晶與藉其特定晶面發展之VLS鬚晶
Pulsed laser ablation condensation of ZnO/Zn for artificial epitaxy and subsequence {hkil}-specific VLS growth
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-09
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
氧化鋅、鬚晶、皮爾斯扭轉
VLS, artificial epitaxy, ZnO/Zn, (R)-type ZnO, Peierls distortion, laser ablation, whisker
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
本文以穿透式電子顯微鏡、掃瞄式電子顯微鏡,配合X光繞射分析來研究脈衝雷射剝蝕凝聚ZnO/Zn之擬磊晶與藉其特定晶面發展之氣-液-固(VLS)鬚晶。
首先,利用脈衝雷射剝蝕金屬鋅靶材的方式,以玻璃基板承接,合成具特殊{10 1}擇優取向之纖鋅礦結構氧化鋅凝聚物,發現其藉由發展良好的{10 1}單晶或雙晶面,相互接合形成擬磊晶 (Artificial epitaxy)。在快速加熱/冷卻的效應下,使這些纖鋅礦結構氧化鋅凝聚物具有相當程度的殘留應力,且粒徑會隨著氧流量增加而降低。
其次,將這些具特殊擇優取向之擬磊晶於600oC進行恆溫熱處理後,凝聚物會以自催化的氣-液-固生長方式,形成棒狀的纖鋅礦結構氧化鋅鬚晶。分析式電子顯微鏡觀察中發現這些鬚晶沿著發展良好的{10 1}極化面生長,來降低靜電能和表面能,或以特定較高共位晶格密度之{11 1}雙晶面生長。
再者,利用脈衝雷射剝蝕形成金屬鋅顆粒,使其包覆具有發展良好{10 1}及{11 1}面的纖鋅礦結構氧化鋅凝聚物,然後將之置於600 oC進行恆溫熱處理後,在熱氧化的效應下,使其生長成錐形且具馬賽克狀{10 1} 及 {2 1}雙晶的鬚晶。這些鬚晶的生長方式可以歸類成一種非常態的氣-液-固生長方式,亦即利用纖鋅礦結構氧化鋅凝聚物的特殊接合雙晶面(coalescence twinning plane) ,並藉著底部熔融態的金屬鋅進行生長。
最後,利用電子束照射奈米級的纖鋅礦結構氧化鋅與金屬鋅之混合凝聚物,發現由於動態的格隙/空缺遷移、晶格參差與毛細效應等因素,促使岩鹽結構氧化鋅的成核,並產生纖鋅礦/岩鹽態的殼核結構。這樣的轉變是依循著椅型皮爾斯扭轉(chair type Peierls distortion)方式之晶向關係 (1 1)R//(0 11)W; [011]R//[ 2 3]W,並且額外將(001)R面沿著( 2 0)W平面旋轉38度,來達到較佳的(10 1)W/(1 1)R晶格匹配度。
Abstract
Wurtzite (W)-type ZnO condensates showed preferred orientation {10 1} when deposited on glass substrate by pulsed laser ablation on Zn target in the presence of oxygen. Such an artificial epitaxy depends on the well developed {10 1} surfaces of the condensates, which enabled {10 1}-specific coalescence to form twin and single crystal regardless of the co-deposited Zn. The W-ZnO condensates have decreasing particle size with increasing oxygen flow rate and a considerable residual stress due to the combined effects of rapid heating/cooling and thermal/lattice mismatch with Zn following parallel epitaxy or (01 )W-ZnO//(01 0)Zn; [ 2 3]W-ZnO//[0001]Zn involving {10 1} slip (Part I).

In addition, wurtzite (W)-type ZnO/Zn composite deposit with preferred orientation {10 1}W-ZnO and (0001)Zn respectively on glass substrate in chapter I under Isothermal (600oC) atmospheric annealing caused self-catalyzed vapor-liquid-solid growth of rod-like W-ZnO whiskers with unusual habit. Analytical electron microscopic observations indicated that the W-ZnO whiskers extend along the zone axis of the well-developed polar surfaces {10 1} for a beneficial lower electrostatic energy and surface energy. Alternatively, the whiskers extend via {11 1}-specific growth twinning and/or coalescence twinning for a beneficial fair coincidence-site lattice at the twin boundary (Part II).

Furthermore, Zn particulates overlain with wurtzite (W)-type ZnO condensates having nearly orthogonal {10 1} and {11 1} facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e. thermal oxidation, at 600oC. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic {10 1} and {2 1} twinned domains. The tapered whiskers can be rationalized by unconventional vapor-liquid-solid growth, i.e. {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and steps under the influence of capillarity effect (Part III).

Finally, Electron irradiation of nano-size wurtzite (W)-type ZnO condensates with intimate mixture of parallel epitaxial Zn caused {10 1}W slip to form a single domain of rock salt (R)-type core and W-type shell. The two polymorphs follow (1 1)R//(0 11)W; [011]R//[ 2 3]W, i.e. chair type Peierls distortion with additional 38 degree tilting (001)R along the ( 2 0)W plane for a fair match of (10 1)W/(1 1)R, the same as one of the two paths for the back-transformation of R-ZnO into a lower crystal symmetry. The martensitic nucleation of R-type ZnO can be attributed to dynamic migration of interstitials/vacancies, lattice mismatch stress, and capillarity effect.
目次 Table of Contents
Contents
Preface I
Abstract V
Contents VII
List of Figures and Appendixes X
List of Tables XXII

Chapter I
{10 1} artificial epitaxy of ZnO on glass via pulse laser deposition
1. Introduction 1
2. Experimental procedure 2
3. Results 3
3.1. Preferred orientation of the deposit on glass according to XRD
3.2. Size and coalescence behavior of the deposits on glass by optical polarized microscopy and SEM
3.3. TEM observations of the condensates collected on carbon-coated collodion film
4. Discussion 7
4.1. Oxygen flow rate dependence of size, phase and considerable residual stress of the condensates
4.2. Preferred {10 1} surfaces for the W-ZnO condensates
4.3. Artificial epitaxy
5. Conclusions 11

Chapter II
{10 1} and {11 1}-specific growth and twinning of ZnO whiskers
1. Introduction 31
2. Experimental procedure 32
3. Results 33
3.1. Phases and preferred orientation of as-deposited and annealed samples
3.2. Occurrence of W-ZnO whiskers in annealed sample
3.3. Habit plane and twinning of W-ZnO whisker
4. Discussion 35
4.1. The effect of condensate shape on whisker growth
4.2. Twinning assisted whisker growth
4.3. Twin plane specification of the whisker
5. Conclusions 39

Chapter III
Tapered ZnO whiskers: {hkil}-specific mosaic twinning VLS growth from a partially molten bottom source
1. Introduction 54
2. Experimental procedure 56
3. Results 57
3.1. Results of PLA process
3.2. Results of annealing
3.3. Investigation of single tapered whiskers
4. Discussion 61
4.1. Scenario of tapered whisker growth from a partially molten bottom source
4.2. Twinning energetics and mass transport for the tapered W-ZnO whisker
4.3. Implications
5. Conclusions 65

Chapter IV
Electron irradiation induced rock salt type structure from ZnO/Zn intergrowth
1. Introduction 75
2. Experimental procedure 77
3. Results 78
3.1. As-condensed particles
3.2. Electron irradiation-induced transformation
4. Discussion 80
4.1. Condensation of dense W- rather than R-type ZnO nanoparticles
4.2. Bulk nucleation of R-ZnO from W-ZnO/Zn nanocondensates
4.3. Peierls distortion path selection
4.4. Implications
5.Conclusions 84
References 93
參考文獻 References
References
Abrahams, S.C. and Bernstein, J.L. (1969) “Remeasurement of the structure of hexagonal ZnO.” Acta Cryst. B, 25, 1233-1236.
Bates, C.H., White, W.B. and Roy, R. (1962) “ New High-Pressure Polymorph of Zinc Oxide.” Science, 137, 993.
Brandon, D.G., Ralph, B., Ranganathan, S. and Wald, M.S. (1964) “Field ion microscope study of atomic configuration at grain boundaries.” Acta Metall. 12 813-821.
Burdett, J.K. and McLarnan, T.J. (1981) “A study of the arsenic, black phosphorus, and other structures derived from rock salt by bond-breaking processes. I. Structural enumeration.” J. Chem. Phys., 75, 5764-5775.
Burdett, J.K. (1984) “From bonds to bands and molecules to solids.” Prog. Solid State Chem., 15, 173-255.
Bar-Yam, Y. and Moustakas, T.D. (1989) “Defect-induced stabilization of diamond films.” Nature, 342, 786-787.
Begin-Colin, S., Caer, G.Le, Mocellin, A. and Zandona, M. (1994) “Polymorphic transformations of titania induced by ball milling.” Phil. Mag. Lett., 69, 1-7.
Banhart, F. and Ajayan, P.M. (1996) “Carbon onions as nanoscopic pressure cells for diamond formation.” Nature, 382, 433-435.
Béré, A. and Serra, A. (2003) “Atomic structures of twin boundaries in GaN.” Phys. Rev. B, 68, 033305-1-4.
Chen, S.Y. and Shen, P. (2002) “Laser ablation condensation of -PbO2-type TiO2.” Phys. Rev. Lett., 89, 096106-1-4.
Chen S.Y. and Shen P. (2004) “Laser ablation condensation and transformation of baddeleyite-type related TiO2.” Jap. J. of App. Phys., 43, 1519-1524.
Chen, S.Y., Shen, P. and Jiang, J. (2004) “Polymorphic transformation of dense ZnO nanoparticles: implications for chair/boat-type Peierls distortions of AB semiconductor.” J. Chem Phys, 121, 11309-11313.
Coleman, V.A. and Jagadish, C., Basic properties and applications of ZnO, in Zinc oxide bulk, thin films and nanostructures, C. Jagadish, S. J. Pearton (eds.), p. 12, Elsevier, Oxford, 2006.
Chen, C.Q. and Zhu, J. (2007) “Bending strength and flexibility of ZnO nanowires.” App. Phys. Lett., 90, 043105-1-3.
Desgreniers, S. (1998) “Structural and compressive high-density phases of ZnO: parameters.” Phys. Rev. B, 58, 14102-14105.
Decremps, F., Zhang J. and Liebermann R.C. (2000) “New phase boundary and high-pressure thermoelasticity of ZnO.” Europhys. Lett., 51, 268-274.
Decremps, F., Pellicer-Porres, J., Datchi, F.J., Itie, J.P., Polin, A., Baudelet, F. and Jiang, J.Z. (2002) “Trapping of cubic ZnO nanocrystallites at ambient conditions.” App. Phys. Lett., 81, 4820-4822.
Dai, Y., Zhang, Y., Bai, Y. Q. and Wang, Z. L. (2003) “Bicrystalline zinc oxide nanowires.” Chem. Phys. Lett., 375, 96-101.
Ding, Y., Gao, P.X. and Wang, Z.L. (2004) “Catalyst-nanostructure interface lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.” J. Am. Chem. Soc., 126, 2066-2072.
Ding, Y. and Wang, Z.L. (2007) “Profile imaging of reconstructed polar and non-polar surfaces of ZnO.” Surf. Sci., 601, 425-433.
Ding, Y.; Wang, Z.L.; Sun, T. and Qiu, J. (2007) “Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires.” Appl. Phys. Lett., 90, 153510-1-3.
Davidson III, F.M., Lee, D.C., Fanfair, D.D. and Korgel, B.A. (2007) “Lamellar twinning in semiconductor nanowires.” J. Phys. Chem. C, 111, 2929-2935.
Fuller, M.L., (1944) “Twinning in zinc oxide.” J. App. Phys., 15, 164-170.
Givargizov, E.I., Oriented crystallization on amorphous substrates, Plenum Press, New York, 1991.
Gui, Y. and Xie, C. (2005) “A novel simplified method for preparing ZnO nanoneedles via H2O2 pre-oxidation.” Mater. Chem. Phys., 93, 539-543.
Hvam, J.M. (1978) “Optical gain and induced absorption from excitonic molecules in ZnO.” Solid State Commun., 26, 987-990.
Hyde, B.G. and Andersson, S. Inorganic Crystal Structures, John Wiley & Sons, 1989.
Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P. (2001) “Catalytic growth of Zinc oxide nanowires by vapor transport.” Adv Mater, 13, 113-116.
Huang, B.H., Shen, P. and Chen, S.Y. (2008) “{10 1} artificial epitaxy of ZnO on glass via pulse laser deposition.” J. Euro Ceram. Soc., 28, 2545-2555.
Huang, B.H., Chen, S.Y. and Shen, P. (2008) “{10 1} and {11 1}-specific growth and twinning of ZnO whiskers.” J. Phys. Chem. C, 112, 1064-1071
Jiang, J.Z., Olsen, J.S., Gerward, L., Frost, D., Rubie, D. and Peyronneau (2000) “Structural stability in nanocrystalline ZnO.” J. Europhys. Lett., 50, 48-53.
Jacobs, K., Zaziski, D., Scher, E.C., Herhold, A.B. and Alivisatos, A.P. (2001) “Activation volumes for solid-solid transformations in nanocrystals.” Science, 293, 1803-1806.
Kollias, N. (1999) “The absorption properties of "Physical" sunscreens.” Arch. Dermatol, 135, 209.
Kern R., Masson A. and Métois J.J. (1971) “Migration brownienne de cristallites sur une surface et relation avec l’épitaxie II. partie théorique.” Surf. Sci., 27, 483-498.
Kuo, L.Y. and Shen, P. (1997) “On the rotation of nonepitaxy crystallites on single crystal substrate.” Surf. Sci., 373, L350-L356.
Kuo, L.Y. and Shen, P. (2000) “On the condensation and preferred orientation of TiC nanocrystals - effects of electric field, substrate temperature and second phases.” Mater. Sci. Eng. A, 276, 99-107.
Kuo, L.Y. and Shen, P. (2000) “Shape and preferred orientation of CeO2 condensates.” Mater. Sci. Eng. A, 277, 258-265.
Lin, C.C. and Shen, P. (1994) “Sol-gel synthesis of zinc orthosilicate.” J. Non-cryst. Solids, 171, 281-289.
Lee, W.H. and Shen, P. (1999) “On the coalescence and twinning of cubo-octahedral CeO2 condensates.” J. Cryst. Growth., 205, 169-176.
Lee, W.H. and Shen, P. (2002) “Laser ablation deposition of CeO2-x epitaxial domains on glass.” J. Solid State Chem., 166, 197-202.
Lu, Q.F. , Wei, H.X. and Hu, Z.D. (2004) “ZnO nanoneedles fabricated by a simple approach and their optical properties.” Trans. Nonferrous Met. Soc. China, 14, 973-976.
Liu, Y., Liao, L., Pan, C., Li, J., Dai, Y. and Chen, W. (2008) “Modulated structure assisted growth and properties of Fe3O4 nanoneedle films using a thermal oxidation process in the air.” J. Phy. Chem. C, 112, 902-910.
Masson, A., Métois, J. J. and Kern, R. (1971) “Migration brownienne de cristallites sur une surface et relation avec l’épitaxie I. partie expérimentale.” Surf. Sci., 27, 463-482.
Métois, J.J., Gauch, M., Masson, A. and Kern, R. (1972) “Migration brownienne de cristallites sur une surface et relation avec l’épitaxie III cas de l’aluminium sur KCl: précisions sur le méchanisme de glissement.” Surf. Sci., 30, 43-52.
Métois, J.J. (1973) “Migration brownienne de cristallites sur une surface et relation avec l’épitaxie IV. mobilité de cristallites sur une surface: décoration de gradins monoatomiques de surface.” Surf. Sci., 36, 269-280.
Métois, J.J. and Heyraud, J.C. (1989a) “SEM studies of equilibrium forms: Roughening transition and surface melting of indium and lead crystals.” Ultramicroscopy, 31, 73-79.
Métois, J.J. and Heyraud, J.C., (1989b) “The overheating of lead crystals.” J.de Physique, 50, 3175-3180.
Meldrum, A., Wang L.M. and Ewing, R.C. (1997) “Electron-beam-induced crystallization and phase segregation in crystalline and amorphous apatite: A TEM study.” Am. Mineral., 82, 858-869.
Mujica, A., Rubio, A., Munoz, A. and Needs, R.J. (2003) “High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys., 75, 863-912.
Meschede, D. “Optics, light and lasers- The practical approach to modern aspects of photnoics and laser physics,” Wiley-Vch Verlag GmbH & Co. KgaA, Weinheim, p. 355, 2004.
Newkirk, H.W. and Smith, D.K. (1965) “Studies on the formation of crystalline synthetic bromellite. I. Microcrystals.” Am. Mineral., 50, 22-43.
Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.J. and Morkoç, H. (2005) “A comprehensive review of ZnO materials and devices.” J. App. Phys., 98, 041301-1 to103.
Panasyuk, G.P., Danchevskaya, M.N. and Kobozev, N.I, Zh. Fiz. Khim. 41 (1967) 691 (in Russian); Diffusion Data, 1, R66.
Penn, R.L. and Banfield, J.F. (1998) “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2.” Am. Mineral., 83, 1077-1082.
Pan, Z.W.; Dai, Z.R.; Wang, Z.L. (2001) “Nanobelts of semiconducting oxides.” Science, 291, 1947-1949.
Pan, C., Chen, S.Y. and Shen, P. (2006) “Laser ablation condensation, coalescence and phase change of dense Al2O3 particles.” J. Phy. Chem. B, 110, 24340-24345.
Qin, Y., Wang, X. and Wang, Z.L. (2008) “Microfibre–nanowire hybrid structure for energy scavenging.” Nature, 451, 809-814.
Stull, D., in American Institute of Physics Handbook, Third Edition, Gray, D.E., Ed. McGraw Hill: New York, 1972.
Shannon, R.D. (1976) “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.” Acta Cryst. A, 32, 751-767.
Shintani, K. (1993) “Line tension and configuration of a dislocation on the basal, prismatic, and pyramidal planes in zinc oxide.” Phys. Rev. B, 47, 7032-7035.
Sabioni, A.C.S., Ramos, M.J.F. and Ferraz, W.B. (2003) “Oxygen diffusion in pure and doped ZnO.” Mater. Res., 6, 173-178.
Sequra, A., Sans, J.A., Manjón, F.J., Muñoz, A. and Herrera-Cabrera, M.J. (2003) “Optical properties and electronic structure of rock-salt ZnO under pressure.” App. Phys. Lett., 83, 278-280.
Shen, P., Hwang, S.L., Chu, H.T., Yui, T.F., Pan, C. and Huang, W.L. (2005) “On the transformation pathways of a-PbO2-type TiO2 at the twin boundary of rutile bicrystals and the origin of rutile bicrystals.” European J. Mineralogy, 17, 543-552.
Schmidt-Mende, L. and MacManus-Driscoll, J.L. (2007) “ZnO- nanostructures, defects, and devices.” Materials Today, 10, 40-48.
Tolbert, S.H. and Alivisatos, A.P. (1995) “The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure.” J. Chem. Phys., 102, 4642-4656.
Takemura, K. (1995) “Zn under pressure: A singularity in the hcp structure at c/a = sqrt[3].” Phys. Rev. Lett., 75, 1807-1810.
Tomlins, G.W., Routbort, J.L. and Mason, T.O. (2000) “Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide.” J. Appl. Phys., 87, 117-123.
Tsai, M.H., Chen, S.Y. and Shen, P., (2004) “Imperfect oriented attachment: accretion and defect generation of nanosize rutile condensates,” Nano Lett., 4, 1179-1201.
Tsai, M.H., Chen, S.Y. and Shen, P. (2005) “Laser ablation condensation of TiO2 particles: Effects of laser energy, oxygen flow rate and phase transformation.” J. Aerosol Sci., 36, 13-25.
Tseng, W.J., Shen, P and Chen, S.Y. (2006) “Defect generation of rutile-type SnO2 nanocondensates: Imperfect oriented attachment and phase transformation.” J. Solid State Chem., 179, 1237-1246.
Winchell, A.N. and Winchell, H., Elements of optical mineralogy – An introduction to microscopic petrography. p. 59, 4th edition, Wiley, New York, 1961.
Wagner, R.S. and Ellis, W.C. (1964) “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 4, 89-90.
Wagman, D.D., Jobe, T.L., Domalski, E.S. and Schumn, R.H., in American Institute of Physics Handbook, Third Edition, D. E. Gray, Ed. McGraw Hill: New York, 1972.
Williams, D.B. Practical analytical electron microscopy in materials science, Mahwah: Philips Electronic Instruments Inc., 1984.
Wu, T.C., Bassett, W.A., Burnley, P.C. and Weathers, M.S. (1993) “Shear-promoted phase transitions in Fe2SiO4 and Mg2SiO4 and mechanism of deep earthquakes.” J. Geophy. Res. B, 98, 19767-19776.
Wang, H. and Fischman, G.S. (1994) “Role of liquid droplet surface diffusion in the vapor-liquid-solid whisker growth mechanism.” J. Appl. Phys., 76, 1557-1562.
Wu, R., Xie, C., Hu, J., Xia, H. and Wang, A. (2000) “Function of oxide film during the thermal oxidation process of Zn nanoparticles.” Scripta Mater., 43, 841-846.
Wilson, M. and Madden, P.A. (2002) “Transformations between tetrahedrally and octahedrally coordinated crystals: the wurtzite → rocksalt and blende → rocksalt mechanisms.” J. Phys. Condens. Mater., 14, 4629-4643.
Wang, Z.L., Kong, X.Y., Ding, Y., Gao, P., Hughes, W.L., Yang, R. and Zhang, Y. (2004) “Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces.” Adv. Func. Mater., 14, 943-956.
Wen, X., Wang, S., Ding, Y., Wang, Z.L. and Yang, S. (2005) “Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.” J. Phy. Chem. B, 109, 215-220.
Wu, X., Bai, H., Li, C., Lu, G. and Shi, G.. (2006) “Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature.” Chem. Commun., 15, 1655-1657.
Wang, X., Zhou, J., Song, J., Liu, J., Xu, N. and Wang, Z.L. (2006) “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire.” Nano Lett., 6, 2768-2772.
Wang, Z.L. (2007a) “The new field of nanopiezotronics.” Materials Today, 10, 20-28.
Wang, Z.L. (2007b) “Nanopiezotronics.” Adv. Mater., 19, 889-892.
Wang, X., Song, J. and Wang, Z.L. (2007) “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices.” J. Mater. Chem., 17, 711-720.
Xu, J., Ji, W., Wang, X.B., Shu, H., Shen, Z.X. and Tang S. H (1998) ”Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles.” J. Raman Spectrosc., 29, 613-615.
Yang, R., Ding, Y. and Wang, Z.L. (2004) “Deformation-free single-crystal nanohelixes of polar nanowires.” Nano Lett., 4, 1309-1312.
Yan, Y., Al-Jassim, M.M., Chisholm, M.F., Boatner, L.A., Pennycook, S.J. and Oxley, M. (2005) “[1 00]/(1102) twin boundaries in wurtzite ZnO and group-III-nitrides.” Phys. Rev. B, 71, 041309-1 to 4.
Zhao, M.H.; Wang, Z.L.; Mao, S.X. (2004) “Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoelectric force microscope.” Nano Lett., 4, 587-590.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.255.127
論文開放下載的時間是 校外不公開

Your IP address is 3.146.255.127
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code