Responsive image
博碩士論文 etd-0729108-230746 詳細資訊
Title page for etd-0729108-230746
論文名稱
Title
結合二維模擬退火法與改良式GML演算法於訊號抵達時間之估測
Estimation of Signal Arrival Time Using 2-D Simulated Annealing and Modified GML Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-26
繳交日期
Date of Submission
2008-07-29
關鍵字
Keywords
超寬頻、訊號抵達時間、廣義最大概似演算法、模擬退火法
UWB, signal arrival time, generalized maximum likelihood, simulated annealing
統計
Statistics
本論文已被瀏覽 5691 次,被下載 7
The thesis/dissertation has been browsed 5691 times, has been downloaded 7 times.
中文摘要
本篇論文主旨在於探討結合二維模擬退火法與改良式廣義最大概似演算法之訊號抵達時間估測架構。在稠密的多重路徑超寬頻傳輸環境裡,接收訊號中第一個抵達路徑的估測可以使用廣義最大概似(Generalized Maximum Likelihood, GML) 演算法,由於GML 演算法的運算複雜度高,花費時間亦較長,有時候甚至無法收斂,因此可以採用簡化的改良式廣義最大概似演算法來估測訊號抵達時間。在上述之估測演算法之中都需設定兩個臨界值參數,其中一個參數用於界定搜尋路徑的抵達時間範圍,另一個振幅參數則做為判別路徑真偽的臨界值,臨界值的選定對於估測結果有直接的影響。一般而言,臨界值的設定可使用最小錯誤機率法,透過誤判(false alarm) 機率與遺失(miss)機率相加總合之最小值來設定。為了消除密集多重路徑的影響並降低演算法的複雜度,我們使用均方根誤差統計值來進行最佳臨界值的搜尋。將兩個臨界值限定在一個合適的範圍內隨機變動,在計算所有臨界值組合所得到的均方根誤差值之後,選擇最小均方根誤差所對應的最佳臨界值組做為訊號抵達時間估測演算法之所需。不同於上述類似網格的全盤搜尋方式,我們利用二維模擬退火法,逐步尋找最小的均方根誤差值,以解決必須完全計算臨界值變動區域內每一個均方根誤差值後才能選定最佳臨界值組的問題。模擬退火法相較於最陡坡降法(gradient descent),能避免區域最小值(local minimum)的情況,並以自動搜尋臨界值的方式,逐步找到較佳的臨界值並改善訊號抵達時間的估測結果。電腦模擬結果顯示,在超寬頻環境中,結合二維模擬退火法與改良式廣義最大概似演算法之架構對於訊號抵達時間的估測準確度,有更佳的結果表現。
Abstract
The main purpose of this thesis is to combine modified GML algorithm with 2-D simulated annealing for estimation of signal arrival time in the UWB systems.In a dense multipath environment, the generalized maximum-likelihood (GML) algorithm can be used for the time-of-arrival (TOA) estimation. Nevertheless, the GML algorithm usually takes a long period of time, and sometimes fails to converge. Hence, a modified GML (MGML) algorithm is investigated. Two threshold parameters need to be determined in using the estimation algorithm. One threshold is to decide the arrival time range of estimated path, and the other, an amplitude threshold, is to judge whether the estimated path is true. Generally, the decision rule of thresholds may be based on the minimum error probability, which is defined as the sum of false alarm probability and miss probability. To mitigate the effects from noise and dense multipath interference, and to reduce the computational complexity of the algorithm, a method of threshold settings based on the minimum root mean square error (RMSE) criteria is discussed. In this scheme, the RMSE value for each candidate threshold pair in an appropriate region is computed. Constructing an accurate RMSE table and performing a full-scale grid search of adequate threshold settings can be very time-consuming. A 2-D simulated annealing process is adopted for finding the best pair of thresholds for use in the modified GML algorithm. The simulated annealing, different from the gradient descent, can avoid trapping into a local minimum in finding the best threshold pair. The resulting threshold pair makes the modified GML algorithm become more efficient in estimating the signal arrival time with an automatic search manner. Simulation results show that the proposed scheme can achieve better performance than the grid search approaches in UWB environments.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..viii
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......1
1.2 文獻探討及研究動機. . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3
2 訊號抵達時間估測法及估測演算法臨界值設定. . . . 4
2.1 室內環境之距離量測及定位. . . . . . . . . . . . . . . . . . 4
2.2 超寬頻系統之訊號模型. . . . . . . . . . . . . . . . . . . . . . 7
2.3 訊號抵達時間估測法. . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 廣義最大概似演算法(GML Algorithm) . . . . . . . .10
2.3.2 改良式廣義最大概似演算法(Modified GML Algorithm) . . . 14
2.4 估測演算法的臨界值設定. . . . . . . . . . . . . . ................15
2.4.1 最小錯誤機率法. . . . . . . . . . . . . . . . . . . . . . . . . ......16
2.4.2 均方根誤差統計法. . . . . . . . . . . . . . . . . . . . . . . . ....18
3 結合二維模擬退火法與改良式廣義最大概似法於訊號抵達時間之估測. . . . . 19
3.1 訊號抵達時間估測架構. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 模擬退火法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......19
3.2.1 模擬退火法的背景及原理介紹. . . . . . . . . . . . . . . . . .19
3.2.2 適用於估測演算法臨界值設定之二維模擬退火法. . . . . . . . . ...22
4 電腦模擬與分析. . . . ...........................................................27
4.1 IEEE 802.15.4 系統之訊號模式. . . . . . . . . . . . . . . . . . 27
4.2 均方根誤差統計法. . . . . . . . . . . . . . . . . . . . . . . . . .........31
4.3 二維模擬退火法用於估測之臨界值設定. . . . . . . . . . . .32
5 結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..39
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ...40
參考文獻 References
[1] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Magazine, vol. 4, no. 2, pp. 36–47, June 2003.
[2] L. Yang and G. B. Giannakis, “Ultra-wideband communications,” IEEE Signal Processing Magazine, vol. 21, no. 6, pp. 26–54, November 2004.
[3] D. Rao and R. J. Barton, “Performance capabilities of UWB location and tracking systems,” in Proceedings of Fortieth Asilomar Conference on Signals,Systems and Computers, November 2006, pp. 564–568.
[4] T. Himsoon, W. Su, and K. J. R. Liu, “Multiband differential modulation for UWB communication systems,” in Proceedings of IEEE Global Telecommunications Conference, vol. 6, Dec. 2005.
[5] D. Cassioli, R. Giuliano, and F. Mazzenga, “Performance evaluation of high data rate UWB systems based on IEEE 802.15.3,” in Proceedings of IEEE International Conference on Ultra-Wideband, September 2005, pp. 678–683.
[6] Y.-S. Kwok, F. Chin, and X. Peng, “Ranging mechanism, preamble generation, and performance with IEEE 802.15.4a low-rate low-power UWB systems,” in Proceedings of IEEE Ninth International Symposium Spread Spectrum Techniques and Applications, August 2006, pp. 430–434.
[7] H. Saarnisaari, “ML time delay estimation in a multipath channel,” in Proceedings of IEEE 4th International Symposium Spread Spectrum Techniques and Applications, vol. 3, Sept. 1996, pp. 1007–1011.
[8] T. G. Manickam, R. J. Vaccaro, and D. W. Tufts, “A least-squares algorithm for multipath time-delay estimation,” IEEE Transactions on Signal Processing,
vol. 42, no. 11, pp. 3229–3233, Nov. 1994.
[9] H. T. Li and P. M. Djuric, “MMSE parameter estimation of multiple chirp signals,” in Proceedings of IEEE International Conference on Acoustics, Speech,and Signal Processing, vol. 5, 1996, pp. 2606–2609.
[10] P. P. Moghaddam, H. Amindavar, and R. L. Kirlin, “A new time-delay estimation in multipath,” IEEE Transations on Signal Processing, vol. 51, no. 5,
pp. 1129–1142, May 2003.
[11] J.-Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 9, pp. 1677 – 1683, December 2002.
[12] C.-D.Wann and S.-W. Yang, “Modified GML algorithm for estimation of signal arrival time in UWB systems,” in Proceedings of IEEE Global Telecommunications Conference, Nov. 2006.
[13] S. Venkatesh and R. M. Buehrer, “NLOS mitigation using linear programming in ultrawideband location-aware networks,” IEEE Transactions on Vehicular Technology, vol. 56, pp. 3182 – 3198, September 2007.
[14] S. Gezici, T. Zhi, G. B. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning
aspects for future sensor network,” IEEE Signal Processing Magazine, vol. 22, pp. 70–84, July 2005.
[15] W.-C. Tsai, “Generalized maximum-likelihood algorithm for time delay estimationin UWB radio,” Master’s thesis, Department of Electrical Engineering
of National Sun Yat-sen University, July 2004.
[16] M. Z. Win, R. A. Scholtz, and M. A. Barnes, “Ultra-wide bandwidth signal propagation for indoor wireless communications,” in Proceedings of IEEE International Conference on Communications, vol. 1, June 1997, pp. 56–60.
[17] J. T. McClave, P. G. Benson, and T.Sincich, Statistic for business and economics, 7th ed. Prentic Hall, 1998.
[18] J. Y. Lee, “Ultra-wideband ranging in dense multipath environments,” Ph.D. dissertation, University of Southern California, May 2002.
[19] N. Metropolis, R. AE, and T. AH, “Equations of calculation by fast computing machines,” Journal of Chemical Physics, pp. 1087–1092, 1953.
[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Opitimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.
[21] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
[22] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), LAN/MAN
Standards Committee of the IEEE Computer Society, August 2007.
[23] F. Chin, “Proposed code sequences, modulation & coding for IEEE 802.15.4a Alt-PHY,” IEEE 802.15-05-0032-01-004a, Institute for Infocomm Research,
Singapore, Jan 2005.
[24] A. F. Molisch, K. Balakrishnan, C. C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE 802.15.4a channel
model - final report,” IEEE 802.15-04/662r0, Nov. 2004.
[25] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5,
no. 2, pp. 128–137, Feb. 1987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.15.63.145
論文開放下載的時間是 校外不公開

Your IP address is 52.15.63.145
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code