Responsive image
博碩士論文 etd-0729109-002348 詳細資訊
Title page for etd-0729109-002348
論文名稱
Title
水團簇與芳香族羧酸分子在固體基板上的運動行為研究
Dynamical Behaviors of a Water Droplet and a Single Aromatic Carboxylic Acid Molecule on a Solid Surface
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-04
繳交日期
Date of Submission
2009-07-29
關鍵字
Keywords
分子動力學、吸附、液滴、聚甲基丙烯酸甲酯、三羧酸衍生物分子、固體基板
PMMA, tricarboxylic acid derivative molecule, solid surface, droplet, adsorption, molecular dynamics
統計
Statistics
本論文已被瀏覽 5667 次,被下載 908
The thesis/dissertation has been browsed 5667 times, has been downloaded 908 times.
中文摘要
本論文係利用分子動力學方法探究兩個表面科學相關之研究,分別為奈米水液滴在聚甲基丙烯酸甲酯基板及單一三羧酸衍生物分子吸附在(100)及(110)平面之金基板平面上的運動行為研究,期望藉由此研究讓研究者們能更深入了解分子的物理吸附特徵與現象,更在領域上有所貢獻,本論文的兩大主題分別如下。

液滴尺寸對於液滴吸附於聚甲基丙烯酸甲酯(PMMA)表面上之結構與運動行為的影響:由於近十年的模擬研究中,水液滴在高分子基板上的濕潤行為研究皆考慮高分子基板為固定基板模型,但由模擬結果發現,固定模型不適合於PMMA基板的模擬,因為固定模型影響了PMMA分子的擴散及吸附在PMMA表面上水分子的穿透行為。我們選取了不同尺寸的液滴來探究尺寸對吸附之水分子以及PMMA分子的特性影響,小尺寸的液滴吸附在PMMA基板上時,會有較多的水分子穿透基板,且液滴所覆蓋的局部粗糙度會明顯較高。小液滴的水分子容易因擴散而滲入基板,使得液滴的接觸角減小,而對於較大的液滴(1000個水分子以上的奈米液滴),接觸角會越接近巨觀實驗所觀察的結果;在水分子的結構方面,結果顯示穿透水的平均氫鍵數與液滴的尺寸成反比;在動態行為的研究上,藉由速度場的分析發現了水液滴在基板上的特殊的律動行為;自我擴散速率分析上發現,穿透水分子的擴散速率明顯較低,而越接近液滴與真空表面的水分子,擴散速率則明顯的上昇;最後在水分子的頻譜、氫鍵生存時間、氫鍵的鬆弛時間及氫鍵角度分佈等分析上,發現氫鍵角度改變與氫鍵生存時間行為息息相關。

表面結構對於三羧酸衍生物分子在金基板表面之動態及靜態行為的研究: 本研究係利用分子動力學法觀察三羧酸衍生物分子(tricarboxylic acid derivative, 1, 3, 5-tri (carboxymethoxy) benzene (TCMB, C6H3(OCH2COOH)3 ))在金基板上的遷移行為,從結構上來看,我們發現因為TCMB分子因為烷鏈上-CH2-基面向基板並接觸的數量不同,TCMB分子會有四種不同構形,此接觸的數量及TCMB分子與表面間的幾何互補性皆是影響TCMB分子在金表面上遷移運動、旋轉運動、交互作用能、及TCMB分子與金表面鎖與鑰匙 (Lock- and-Key) 等行為的重要因素。最後我們總結,吸附分子與表面結構間的互補性越差,將導致分子的不穩定遷移,此結果將對於單分子膜的設計上有所幫助。
Abstract
This dissertation, studies two specific topics related to the research of surface science by employing the molecular dynamics (MD) approach, that of a water droplet deposited on a poly (methyl methacrylate) (PMMA) substrate and that of a single tricarboxylic acid derivative, 1, 3, 5-tri(carboxymethoxy) benzene (TCMB, C6H3(OCH2COOH)3 ) adsorbed on gold (100) and (110) surfaces. These can help engineers clarify the characteristics and phenomena of physical adsorption of the molecule, as well as contributing to the application of surface science. This work is divided into two parts.

Effect of droplet size on the structural and dynamical behavior of a water droplet spreading on a PMMA amorphous surface: note that most experts prefer to consider a rigid model as the substrate in research of surface wetting because it is more efficient to run the MD simulation such that a long simulation can be accomplished in a short time. The results verify that the rigid model is not suitable to act as the PMMA substrate in simulation because it prevents the diffusion of PMMA molecules, which then affects the penetration behavior of water molecules in the droplet upon impact with the PMMA surface. Several sizes of water droplets are considered in order to understand the size influence of the droplet on the properties of water molecules and on the PMMA surface. The penetrated water molecules and the local roughness increase with a decrease in the size of the droplet, which also leads to a smaller contact angle of the water droplet on the PMMA substrate. When the droplet is composed of more than 1000 water molecules, the contact angle shows agreement with experimental results. As regarding the structure of the water molecule in the droplet on PMMA substrate, the average number of hydrogen-bonded penetrating water molecules is in inverse proportion to the size of the droplet By examining the velocity field, the regular motion of the water droplet is found during the equilibrium process and after the droplet reaches the equilibrium state. The diffusion of the water molecules shows a significant decrease for the penetrated water molecules and an increase as it gradually approaches the vapor/liquid interface. Finally, calculations at different regions are made for the vibration spectrum of the oxygen atom, life time, and the relaxation time of the hydrogen bond. The changes of the hydrogen-bond dynamics of the hydrogen bond are consistent with the change of the distribution of the hydrogen bond angle.

Effect of surface structure on the structural and dynamical behavior of a tricarboxylic acid derivative molecule on Au surfaces: the dynamical behavior of the single tricarboxylic acid derivative, 1, 3, 5-tri(carboxymethoxy) benzene (TCMB, C6H3(OCH2COOH)3 ) on Au (100) and (110) surfaces by molecular dynamics simulation approach is studied to provide better understanding of surface diffusion. Four possible conformations of the adsorbed TCMB molecule on the Au surface are found, with differences arising from different numbers of CH2 groups adsorbed on the Au substrate. Both the number of CH2 groups in the TCMB molecule that interact with Au surface and the different geometric relationship between the TCMB molecule and the Au surface strongly affect the translational motion, rotational motion, interaction energy and the Lock-and-Key behaviors of the TCMB molecule. A poor complementarity between the TCMB molecule shape and atomic structure of the surface results in significant migration of the molecule and is therefore an unstable adsorption. These results will be useful for the design of a molecular monolayer.
目次 Table of Contents
Contents I
List of Figures IV
List of Tables VII
List of Symbols VIII
List of Abbreviations XIII
Abstract XIV
Chapter 1 Introduction 1
1-1 Introduction to Surface Wetting Technology 1
1-1-1 Application and Theory 1
1-1-2 Reviewing of Molecular Modeling for Surface Wetting 2
1-2 Introduction to Surface adsorption behavior of molecules on solid surfaces 5
1-2-1 Application and Experiment Studies 5
1-2-2 Reviewing of Molecular Modeling for Surface Adsorption 6
1-3 Hydrogen-Bonding Dynamics and Diffusion 8
1-4 Outline of the Dissertation 8
Chapter 2 Molecular Dynamics Modeling 10
2-1 Introduction 10
2-2 Equations of Motion 10
2-3 Empirical Force Field Model 12
2-3-1 Development and Outline of Force Field for Bio-molecule and polymer system 12
2-3-2 Energy Calculation and Dynamics Force Field 13
2-3-3 Tight-Binding Potential 14
2-3-4 Dreiding Force Field 15
2-4 Thermodynamic Ensembles 15
2-5 Constant temperature dynamics 16
2-5-1 Rescaling of Velocity 16
2-5-2 Heat Bath: weak coupling method 17
2-5-3 Heat Bath: Stochastic collision method 18
2-5-4 Heat Bath: extended system coupling method 19
2-6 Constant Pressure dynamics 20
Chapter 3 Numerical methodology of Molecular Dynamics 22
3-1 Periodic boundary conditions and minimum image convention 22
3-2 Treatment of non-bonded interaction 24
3-3 Non-bonded neighbor lists 28
3-4 Flow chart of Molecular Dynamics 30
Chapter 4 Results and Discussion 31
4-1 Droplet size effect on the structural and dynamical behavior of water droplet spreading on a PMMA Amorphous surface 31
4-1-1 Poly (methyl methacrylate) (PMMA) 31
4-1-1 Simulation Model 32
4-1-2 Surface Topology of PMMA substrate 36
4-1-3 Comparison of Adsorption Process between Rigid model and Flexible model 37
4-1-4 Adsorption Process and Snapshot 41
4-1-5 Topology of PMMA Surface after the Adsorption of Water Droplet 45
4-1-6 Analysis of Contact Angle 47
4-1-7 Structure of Hydrogen Bond 49
4-1-8 Analysis of Velocity Field 53
4-1-9 Self-Diffusion coefficient of water molecule 55
4-1-10 Vibration spectrum of water molecule 59
4-1-11 Hydrogen Bond Angle and Strength 61
4-1-12 Hydrogen Bond Dynamics 63
4-2 Effect of Surface Structure on the Structural and Dynamical Behavior of an Aromatic Carboxylic Acid Molecule on Au Surfaces 67
4-2-1 Tricarboxylic acid derivatives of 1,3,5-tris (carboxymethoxy) benzene ( C6H3(OCH2COOH) 3) molecule 67
4-2-2 Simulation Model 67
4-2-3 Migration Trajectory 71
4-2-4 Geometric Relationship between TCMB Molecule and Au Surface 74
4-2-5 Translational Motion and Rotational Motion 78
4-2-6 Adsorption Energy 84
4-2-7 Dynamical Behaviors 86
Chapter 5 Conclusion and Future Works 88
5-1 Conclusion of the study of water droplet spreading on a PMMA Amorphous surface 88
5-1-1 Structural Characteristic 88
5-1-2 Dynamical behavior 88
5-2 Conclusion of the study of an Aromatic Carboxylic Acid Molecule on Au Surfaces 89
5-3 Future Works 92
Appendix A Parameters in force field 96
References 101
參考文獻 References
[1] D. C. D. Roux and J. J. Cooper-White, "Dynamics of water spreading on a glass surface,," J. Colloid Intrface Sci.,, vol. 277, p. 424, 2004.
[2] F. Heslot, A. M. Cazabat, and N. Fraysse, "Diffusion-controlled wetting films," J. Phys.: Condens Matter, vol. 1, p. 5793, 1989.
[3] F. B. Wyart and P. G. Gennes, "Dynamics of partial wetting," Adv. Colloid Interface Sci., vol. 39, p. 1, 1992.
[4] P. G. d. Gennes, "Wetting: Static and dynamics," Rev. Mod. Phys., vol. 57, p. 827, 1985.
[5] O. D. Velev, B. G. Prevo, and K. H. Bhatt, "On-chip Manipulation of Free Droplets," Nature, vol. 426, p. 515, 2003.
[6] V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab Chip, vol. 4, p. 310, 2004.
[7] T. Taniguchi, T. Torii, and T. Higuchi, "Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media," Lab Chip, vol. 2, p. 19, 2002.
[8] R. Ramesh, T. Saeki, N. S. Templeton, L. Ji, L. C. Stephens, I. Ito, D. R. Wilson, Z. Wu, C. D. Branch, J. D. Minna, and J. A. Roth, "Successful Treatment of Primary and Disseminated Human Lung Cancers by Systemic Delivery of Tumor Suppressor Genes Using an Improved Liposome Vector," Molecular Therapy, vol. 3, p. 337, 2001.
[9] T. A. Tirone, S. P. Fagan, N. S. Templeton, X. Wang, and F. C. Brunicardi, "Insulinoma-Induced Hypoglycemic Death in Mice is Prevented With Beta Cell-Specific Gene Therapy," Annals of surgery vol. 233, p. 603, 2001.
[10] G. Kong, R. Braun, and M. Dewhirst, "Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size," Cancer Res, vol. 60, p. 4440, 2000.
[11] M. Abdelgawad and A. R. Wheeler, "Low-cost, rapid-prototyping of digital microfluidics devices," Microfluid Nanofluid, vol. 4, p. 349, 2008.
[12] Y. Wang, Z. Y, and S. K. Cho, "Efficient in-droplet separation of magnetic particles for digital microfluidics," J. Micromech. Microeng., vol. 17, p. 2148, 2007.
[13] H. Yang, Barbulovic-Nad, P. S. Park, and A. R. Wheeler, "Digital microfluidics for cell-based assays," Lab Chip, vol. 8, p. 519, 2008.
[14] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sens. Actuators, Phys. A, vol. 95, p. 259, 2002.
[15] M. G. Pollack, R. B. Fair, and A. D. Shenderov, "Electrowetting-based actuation of liquid droplets for microfluidic applications," Appl. Phys. Lett., vol. 77, p. 1725, 2000.
[16] A. W. Adamson, "Physical Chemistry of Surfaces," (2nd ed., New York, London and Sydney: John Wiley & Sons Inc. ), 1967.
[17] T. Young, "An Essay on the Cohesion of Fluids," Phil. Trans. Roy. Soc. , vol. 95, p. 65, 1805.
[18] J. Y. Wang, S. Betelu, and B. M. Law, "Line tension approaching a first-order wetting transition: experimental results from contact angle measurements," Physical Review E vol. 63, p. 031601, 2001.
[19] K. Bierbaum, M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, A. B. D. Cassie, and S. Baxter, "Wettability of Porous Surfaces," Trans. Faraday Soc. , vol. 40, p. 546, 1944.
[20] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Eng. Chem., vol. 28, p. 988, 1936.
[21] P. Letellier, A. Mayaffre, and M. Turmine, "Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited," Journal of Colloid and Interface Science, vol. 314, p. 604, 2007.
[22] A. M. Dokter, S. Woutersen, and H. J. Bakker, "Anomalous Slowing Down of the Vibrational Relaxation of Liquid Water upon Nanoscale Confinement," Phys. Rev. Lett., , vol. 94, p. 178301 2005.
[23] B. E. Wyslouzil, J. L. Cheung, G. Wilemski, and R. Strey, "Small Angle Neutron Scattering from Nanodroplet Aerosols," Phys. Rev. Lett., vol. 79, p. 431 1997.
[24] B. E. Wyslouzil, G. Wilemski, R. Stret, C. H. Heath, and U. Dieregsweiler, "Experimental evidence for internal structure in aqueous–organic nanodroplets," Phys. Chem. Chem. Phys., vol. 8, p. 54 2006.
[25] B. E. Wyslouzil, G. Wilemski, J. L. Cheung, R. Strey, and J. Barker, "Doppler shift anisotropy in small angle neutron scattering," Phys. Rev. E, vol. 60, p. 4330 1999.
[26] J. Hautman and M. L. Klein, "Microscopic Wetting Phenomena," Physical Review Letters, vol. 67, p. 1763, 1991.
[27] C. F. Fan and T. Caĝin, "Wetting of crystalline polymer surfaces: A molecular dynamics simulation," J. Chem. Phys, vol. 103, p. 9053, 1995.
[28] M. Schneemilch and N. Quirke, "Effect of oxidation on wettability of poly(dimethylsiloxane) surfaces," J. Chem. Phys, vol. 127, p. 114701, 2007.
[29] J. T. Hirvi and T. A. Pakkanen, "Molecular dynamics simulations of water droplets on polymer surfaces," J. Chem. Phys, vol. 125, p. 144712, 2006.
[30] J. T. Hirvi and T. A. Pakkanen, "Wetting of Nanogrooved polymer surfaces," Langmuir, vol. 23, p. 7724, 2007.
[31] J. T. Hirvi and T. A. Pakkanen, "Enhanced hydrophobicity of rough polymer surfaces," J. Phys. Chem. B, vol. 111, p. 3336, 2007.
[32] T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, "On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes," J. Phys. Chem. B, vol. 107, p. 1345, 2003.
[33] M. Lundgren, N. L. Allan, and T. Cosgrove, "Wetting of Water and Water/Ethanol Droplets on a Non-Polar Surface: A Molecular Dynamics Study," Langmuir, vol. 18, p. 10462, 2002.
[34] C. C. Hwang, Y. R. Jeng, Y. L. Hsu, and J. G. Chang, "Molecular Dynamics Simulation of Microscopic Droplet Spread on Rough Surfaces," Journal of the Physical Society of Japan, vol. 70, p. 2626, 2001.
[35] T. Kimura and S. Maruyama, "A molecular dynamics simulation of water droplet in contact with a platinum surface," The 6th ASME-JSME Thermal Engineering Joint Conference, March16-20, pp. TED-AJ03-183, 2003.
[36] B. Shi, S. Sinha, and V. K. Dhir, "Molecular simulation of the contact angle of water droplet on a platinum surface," ASME International Mechanical Engineering Congress and Exposition, Novement 5-11, 2005.
[37] S. M. S. Matsumoto, H. Saruwatari, , "A molecular dynamics simulation of a liquid droplet on a solid surface," ASME/JSME Thermal Engineering conference, vol. 2, p. 557 1995.
[38] M. H. Adão, M. D. Ruijter, M. Voué, and J. D. Coninck, "Droplet spreading on heterogeneous substrates using molecular dynamics," Phys. Rev. E, vol. 59, p. 746 1999.
[39] X. Li, Y. Hu, and H. Wang, "Modeling of lubricant spreading on a solid substrate," J. Appl. Phys., vol. 99, p. 024905 2006.
[40] G. S. Grest, D. R. Heine, and E. B. Webb, "Liquid nanodroplets spreading on chemically patterned surfaces," Langmuir, vol. 22, p. 4745 2006.
[41] M. Patra and P. Linse, "Simulation of Grafted Polymers on Nanopatterned Surfaces," Nano Lett., vol. 6, p. 133 2005.
[42] P. Doruker and W. L. Mattice, "Effect of surface roughness on structure and dynamics in thin films," Macromol. Theory Simul. , vol. 10, p. 363, 2001.
[43] T. Hapke, A. Linke, G. Patzold, and D. W. Heermann, "Modeling of amorphous polymer surfaces in computer simulation " Surface Science, vol. 373, p. 109, 1997.
[44] G. Xu and W. L. Mattice, "Monte Carlo simulation on the glass transition of free-standing atactic polypropylene thin films on a high coordination lattice," J. Chem. Phys, vol. 118, p. 5241, 2003.
[45] P. Doruker, "Simulation of Polyethylene Thin Films Composed of Various Chain Lengths," Polymer vol. 43, p. 425, 2002.
[46] P. Doruker, "Segregation of Chain Ends is a Weak Contributor to Increased Mobility at Free Polymer Surfaces," J. Phys. Chem. B, vol. 103, p. 178, 1999.
[47] J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher, "Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films," Phys. Rev. Lett., vol. 77, p. 2002, 1996.
[48] T. K. Xia, J. Ouyang, M. W. Ribarsky, and U. Landman, "Interfacial alkane films," Phys. Rev. Lett., vol. 69, p. 1967 1992.
[49] K. C. Daoulas, V. A. Harmandaris, and V. G. Mavrantzas, "Detailed Atomistic Simulation of a Polymer Melt/Solid Interface: Structure, Density, and Conformation of a Thin Film of Polyethylene Melt Adsorbed on Graphite," Macromolecules vol. 38, p. 5780, 2005.
[50] I. Benjamin, "Hydrogen Bond Dynamics at Water/Organic Liquid Interfaces," J. phys. Chem. B, vol. 109, p. 13711, 2005.
[51] J. L. Rivera, C. McCabe, and P. T. Cummings, "Molecular simulations of liquid-liquid interfacial properties: Water–n-alkane and water-methanol–n-alkane systems," Phys. Rev. E, vol. 67, p. 011603, 2003.
[52] Y. Zhang, S. E. Feller, B. R. Brooks, and R. W. Pastor, "Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water," J. Chem. Phys, vol. 103, p. 10252, 1995.
[53] S. S. Jang, S. T. Lin, P. K. Maiti, M. Blanco, and W. A. G. III, "Molecular Dynamics Study of a Surfactant-Mediated Decane−Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate," J. Phys. Chem. B, vol. 108, p. 12130, 2004.
[54] H. Kikuchi, S. Kuwajima, and M. Fukuda, "Novel method to estimate solubility of small molecules in cis-polyisoprene by molecular dynamics simulations," J. Chem. Phys, vol. 115, p. 6258, 2001.
[55] S. Paul and A. Chandra, "Hydrogen bond dynamics at vapour–water and metal–water interfaces," Chemical Physics Letters, vol. 386, p. 218, 2004.
[56] J. L. Keddie, R. A. L. Jones, and R. A. Cory, "Interface and surface effects on the glass-transition temperature in thin polymer films " Faraday Discuss. Chem. Soc., vol. 98, p. 219, 1994.
[57] S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch, and C. M. S. Torres, "Nanoimprint lithography: Challenges and prospects " Nanotechnology vol. 12, p. 91 2001.
[58] K. Fukao and Y. Miyamoto, "Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene," Phys. Rev. E vol. 61, p. 1743, 2000.
[59] J. L. Keddie, R. A. L. Jones, and R. A. Cory, "Size-Dependent Depression of the Glass Transition Temperature in Polymer Films," Europhys. Lett. , vol. 27 pp. 59-64 1994
[60] G. B. DeMaggio, W. E. Frieze, and D. W. Gidley, "Interface and Surface Effects on the Glass Transition in Thin Polystyrene Films," Phys. Rev. Lett., vol. 78, pp. 1524 - 1527 1997.
[61] W. E. Wallace, J. H. v. Zanten, and W. L. Wu, "Influence of an impenetrable interface on a polymer glass-transition temperature," Phys. Rev. E, vol. 52, p. R3329, 1995.
[62] K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, "Dynamics of alpha and beta processes in thin polymer films: poly(vinyl acetate) and poly(methyl methacrylate)," Phys. Rev. E vol. 64, p. 051807 2001.
[63] H. J. Yan, J. Lu, L. J. Wan, and C. L. Bai, "STM Study of Two-Dimensional Assemblies of Tricarboxylic Acid Derivatives on Au(111)," J. Phys. Chem. B, vol. 108 pp. 11251–11255, 2004.
[64] S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, and K. Kern, "Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems," Nature Materials vol. 3, pp. 229 - 233, 2004.
[65] R. Otero, F. Hümmelink, F. Sato, S. B. Legoas, P. Thostrup, E. Lægsgaard, I. Stensgaard, D. S. Galvão, and F. Besenbacher, "Lock-and-key effect in the surface diffusion of large organic molecules probed by STM," Nat. Mater. , vol. 3, p. 779, 2004.
[66] S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J. V. Barth, and K. Kern, "Programming Supramolecular Assembly and Chirality in Two-Dimensional Dicarboxylate Networks on a Cu(100) Surface," Nano Letter, vol. 5, p. 901, 2005.
[67] S. Clair, S. Pons, A. P. Seitsonen, H. Brune, K. Kern, and J. V. Barth, "STM Study of Terephthalic Acid Self-Assembly on Au(111): Hydrogen-Bonded Sheets on an Inhomogeneous Substrate," J. Phys. Chem. B vol. 108, p. 14585, 2004.
[68] T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Mashiko, "Selective assembly on a surface of supramolecular aggregates with controlled size and shape," Nature, vol. 413, p. 619, 2001.
[69] G. Schull, L. Douillard, C. Fiorini-Debuisschert, and F. Charra, "Single-Molecule Dynamics in a Self-Assembled 2D Molecular Sieve," Nano Lett. , vol. 6, p. 1360, 2006.
[70] G. J. Su, H. M. Zhang, L. J. Wan, C. L. Bai, and T. Wandlowski, "Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au(111)," J. Phys. Chem. B, vol. 108, p. 1931, 2004.
[71] J. Lu, Q. d. Zeng, C. Wang, Q. y. Zheng, L. Wan, and C. Bai, "Self-assembled two-dimensional hexagonal networks " J. Mater. Chem. , vol. 12, p. 2856, 2002.
[72] R. Braun, M. Sarikaya, and K. Schulten, "Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics " Polym. Ed., vol. 13, p. 747, 2002.
[73] C. L. Pint, M. W. Roth, and C. Wexler, "Behavior of hexane on graphite at near-monolayer densities: Molecular dynamics study," Physical Review B vol. 73, p. 085422, 2006.
[74] M. W. Roth, C. L. Pint, and C. Wexler, "Phase transitions in hexane monolayers physisorbed onto graphite," Physical Review B vol. 71, p. 155427 2005.
[75] N. Winter, J. Vieceli, and I. Benjamin, "Hydrogen-bond structure and dynamics at the interface between water and carboxylic acid-functionalized self-assembled monolayers," J. Phys. Chem. B, vol. 112, pp. 227-231, 2008.
[76] P. Liu, E. Harder, and B. J. Berne, "Hydrogen-Bond Dynamics in the Air/Water Interface," J. Phys. Chem. B, vol. 109, p. 2949 2005.
[77] S. T. Lin, P. K. Maiti, and W. A. Goddard, "Dynamics and thermaodynamics of water in PAMAM dendrimers at subnanosecond time scales," J. Phys. Chem. B, vol. 109, pp. 8663-8672, 2005.
[78] D. Frenkel and B. Smit, "Understanding Molecular Simulation from Algorithms to Applications," (Academic, New York, 2002).
[79] A. R. Leach, "Molecular Modeling, Principles and Applications," (2/E., Addison Wesley Longman Limited 2001).
[80] 楊小鎮, 分子模擬與高分子材料(北京: 科學出版社 2002).
[81] M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, "Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution," Com. Phys. Com vol. 91, p. 215, 1995.
[82] A. Hagler, P. Stern, R. Sharon, J. Becker, and F. Naider, "Computer Simulation of Conformational Properties of Oligopeptides. Comparison of Theoretical Methods and Analysis of Experimental Results," J. Am. Chem. Soc., vol. 101, p. 6842, 1979.
[83] S. Weiner, P. Kollman, D. Case, U. Singh, C. Ghio, G.Alagona, S. Profeta, and P. Weiner, "A new force field for molecular mechanical simulation of nucleic acids and proteins," J. Am. Chem. Soc., vol. 106, p. 765, 1984.
[84] B. Brooks, R. Bruccoleri, B.Olafson, D. States, S.Swaminathan, and M. Karplus, "CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations," J. Comp. Chem., vol. 4, p. 187, 1983.
[85] W. F. v. Gunsteren and H. J. C. Berendsen, "Groningen Molecular Simulation (GROMOS) Library Manual," Biomos, 1987.
[86] S. L. Mayo, B. D. Olafson, and W. A. Goddard, "Dreiding:A Generic Force Field for Molecular Simulations," Journal of Phys. Chem., vol. 94, p. 8897, 1990.
[87] S. Lifson and A. Warshel, "Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules," J. Chem. Phys., vol. 49, p. 5116, 1968.
[88] A. Warshel and S. Lifson, "Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes," J. Chem. Phys., vol. 53, p. 582, 1970.
[89] M. Levitt and S. Lifson, "Refinement of protein conformations using a macromolecular energy minimization procedure," J. Mol. Biol., vol. 46, p. 269, 1969.
[90] C. L. I. Brooks, B. M. Pettitt, and M. Karplus, "Structural and Energetic effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids," J. Chem. Phys. , vol. 83 p. 5897, 1985.
[91] P. J. Steinbach and B. R. Brooks, "New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. ," J. Comp. Chem. , vol. 15 p. 667, 1994.
[92] M. Prevost, G. Lippens, and S. Wodak, "Computer Simulations of Liquid Water: Treatment of Long-range Interactions," Mol. Phys. , vol. 71 p. 587, 1990.
[93] C. L. I. Brooks, B. M. Pettitt, and M. Karplus, "Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids. ," J. Chem. Phys., vol. 83 p. 5897, 1985.
[94] M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, "Molecular Dynamics of Macromolecules in Water.," Chemica Scripta A, vol. 29 p. 197, 1989.
[95] R.J. Loncharich and B.R. Brooks, "The Effects of Truncating Long-Range Forces on Protein Dynamics.," Proteins-Struc. Func. Genet vol. 6 p. 32, 1989.
[96] P.E. Smith and M.B. Pettitt, "Peptides in Ionic Solutions: A Comparison of the Ewald and Switching Function techniques. ," J. Chem. Phys. , vol. 95, p. 8430, 1991.
[97] M. Levitt, M. Hirshberg, R. Sharon, K. E. Laiding, and V. Daggett, "Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution," J. Phys. Chem. B, vol. 101, p. 5051 1997.
[98] http://depts.washington.edu/daglab/downloads/Daggett_cv.pdf.
[99] V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model " Philos. Mag. A, vol. 59, p. 321, 1989.
[100] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Phys. Rev. B vol. 48, p. 22, 1993.
[101] S. S. Jang, Y. H. Jang, Y. H. Kim, W. A. G. III, A. H. Flood, B. W. Laursen, H. R. Tseng, J. F. Stoddart, J. O. Jeppesen, J. W. Choi, D. W. Steuerman, E. DeIonno, and J. R. Heath, "Structures and Properties of Self-Assembled Monolayers of Bistable [2] Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment," J. Am. Chem. Soc., vol. 127, p. 1563, 2005.
[102] J. Norberg and L. Nilsson, "Advances in biomolecular simulations: methodology and recent applications," Quarterly Reviews of Biophysics, vol. 36, pp. 257-306, 2003.
[103] D. A. C. Beck, R. S. Armen, and V. Daggett, "Cutoff size need not strongly influence moleuclar dynamics results for solvated polypeptides," Biochemistry, vol. 44, pp. 609-616, 2005.
[104] J. Norberg and L. Nilsson, "On the truncation of long range electrostatic interactionsin DNA," Biophysical Journal, vol. 79, pp. 1537-1553, 2000.
[105] J. M. Haile, "Molecular Dynamics Simulation : elementary methods," (John Wiley & Sons, New York, 1992).
[106] M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," (Clarendon Press, Oxford, 1987).
[107] G. Binnig, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, and T. W. Kenny, "Ultrahigh-density atomic force microscopy data storage with erase capability," Appl. Phys. Lett. , vol. 74, p. 1329 1999.
[108] P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, "The ``Millipede'--more than one thousand tips for future AFM data storage," IBM J. Res. Develop, vol. 44, p. 323, 2000.
[109] L. J. Kricka, P. Fortina, P. N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, "Fabrication of plastic microchips by hot embossing," lab Chip, vol. 2, p. 1, 2002.
[110] T. J. Johnson, D. Ross, M. Gaitan, and L. E. Locascio, "Laser Modification of Preformed Polymer Microchannels: Application To Reduce Band Broadening around Turns Subject to Electrokinetic Flow," Anal. Chem. , vol. 73, p. 3656, 2001.
[111] S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, "Microfluidic devices fabricated in poly( methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection," Lab Chip, vol. 2, p. 88, 2002.
[112] F. Fixe, M. Dufva, P. Telleman, and C. B. V. Christensen, "One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates," Lab Chip, vol. 4, p. 191, 2004.
[113] K. Tanaka, Y. Fujii, H. Atarashi, K. i. Akabori, M. Hino, and T. Nagamur, "Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films," Langmuir, vol. 24, pp. 296-301, 2008.
[114] A. Chandra, "A Kirkwood−Buff Derived Force Field for Mixtures of Urea and Water," J. Phys. Chem. B vol. 107, p. 3899 2003.
[115] G. Sutmann and R. Vallauri, "Dynamics of the hydrogen bond network in liquid water " Journal of Molecular Liquids, vol. 98–99, p. 215 2002.
[116] H. Xu, H. A. Stern, and B. J. Berne, "Can Water Polarizability Be Ignored in Hydrogen Bond Kinetics?," J. Phys. Chem. B vol. 106, p. 2054 2002.
[117] S. P. Ju, M. L. Liao, C. H. Chen, W. J. Lee, and J. G. Chang, Computational Materials Science, vol. 45, p. 867, 2009.
[118] K. Tanaka, Y. Fujii, H. Atarashi, K.-i. Akabori, M. Hino, and T. Nagamur, "Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films," Langmuir, vol. 24, pp. 296-301, 2008.
[119] M. J. d. Ruijter, T. D. Blake, and J. D. Coninck, "Dynamic wetting studied by molecular modeling simulations of droplet spreading," Langmuir, vol. 15, p. 7836, 1999.
[120] S. A. Soper, A. C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, and R. L. McCarley, "surface modification of polymer-based microfluidic devices " Analytica Chimica Acta, vol. 470, p. 87, 2002.
[121] J. Chai, F. Lu, B. Li, and D. Y. Kwok, "Wettability interpretation of oxygen plasma modified poly(methyl methacrylate)," Langmuir, vol. 20, p. 10919, 2004.
[122] L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschulk, "Fabrication and Characterization of Poly(methylmethacrylate) Microfluidic Devices Bonded Using Surface Modification and Solvents," Lab Chip, vol. 6, p. 66, 2006.
[123] N. Choudhury and B. M. Pettitt, "Dynamics of water Trapped between Hydrophobic Solutes," J. Phys. Chem. B, vol. 109, pp. 6422-6429, 2005.
[124] M. Marchi, F. Sterpone, and M. Ceccarlli, "Water Rotational Relaxation and Diffusion in Hydrated Lysozyme," J. Am. Chem. Soc., vol. 124, p. 6787, 2002.
[125] J. Martí, J. A. Padro, and E. Guardia, "Molecular dynamics simulation of liquid water along the coexistence curve: hydrogen bonds and vibrational spectra," J. Chem. Phys., vol. 105, p. 639, 1996.
[126] A. Luzar, "Resolving the hydrogen bond dynamics conundrum," J. Chem. Phys., vol. 113, p. 10663, 2000.
[127] S. Wang, H. Xing, Y. Li, J. Bai, Y. Pan, M. Scheer, and X. You, "2D and 3D Cadmium(II) Coordination Polymers from a Flexible Tripodal Ligand of 1,3,5-Tris(carboxymethoxy)benzene and Bidentate Pyridyl-Containing Ligands with Three-, Eight- and Ten-Connected Topologies," European Journal of Inorganic Chemistry, vol. 2006, p. 3041, 2006.
[128] W.-J. Lee, M.-H. Weng, S.-P. Ju, and H.-C. Chen, "Lock and key behaviors of an aromatic carboxylic acid molecule with differing conformations on an Au (111) surface," Molecular Physics, vol. 106, pp. 2371-2380, 2008.
[129] A. Bondi, "van der Waals Volumes and Radii," J. Phys. Chem. , vol. 68, p. 441, 1964.
[130] P. K. Mandal and E. Arunan, "Hydrogen bond radii for the hydrogen halides and van der Waals radius of hydrogen," E. J. Chem. Phys., vol. 114, p. 3880, 2001.
[131] S. S. Batsanov, "Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules " Struct. Chem. , vol. 6, p. 395, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code