Responsive image
博碩士論文 etd-0729110-164903 詳細資訊
Title page for etd-0729110-164903
論文名稱
Title
以水溶液法備製氧化鋅奈米針於濺鍍氧化鋅結核層之研究
Characterization of Zinc Oxide Nanotip Prepared by Aqueous Solution Deposition on Sputtered Zinc Oxide Nucleation Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-08
繳交日期
Date of Submission
2010-07-29
關鍵字
Keywords
水溶液沉積法、氧化鋅、奈米結構
Aqueous solution, ZnO, Nanostructure
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本研究將利用水溶液沉積法將氧化鋅奈米針成長於氧化鋅結核層,並使用不同的結核層參數生長不同方向性之奈米針。藉由氮氣的低溫回火提高氧化鋅奈米結構的紫外光激發並改善結晶構造,減少缺陷。氧化鋅奈米針可利用其粗化表面和光學影響的特性,在應用上可當作抗反射層。本實驗中將利用氧化鋅奈米針應用於單晶矽太陽能電池上,利用氧化鋅奈米針當抗反射層以增加光穿透率,提升太陽能電池之效率。
Abstract
In this study, we prepare the zinc oxide nanotip with aqueous solution deposited on ZnO nucleation layer. The directions of nanotip are formed with different ZnO nucleation layer time. The thermal annealing with N2 ambiance at 300 ℃ for 1 hr increase the UV emission and decrease the defects. We use ZnO nanotip as an anti-reflection layer because of surface roughness and optical interference. ZnO nanotip with rough surface decreases reflection and enhance the transmission, so we use ZnO nanotip as an anti-reflection layer, after growin ZnO nanotip on solar cell the efficiency of solar cell was enhancement.
目次 Table of Contents
Chapter 1 1
Introduction 1
1.1 Effects of nano structure material and applications 1
1.2 Properties of Zinc Oxide (ZnO) 2
1.3 Synthesis of ZnO nanotip 3
1.4 Advantages of aqueous solution deposition (ASD) 4
1.5 Motivation 4
References 13
Chapter 2 16
Experiments 16
2.1 Substrate cleaning procedures 16
2.2 ZnO nucleation layer prepared by RF sputtering 17
2.2.1 Sputtering mechanism 17
2.2.2 RF sputtering 18
2.3 ZnO nucleation layer prepared with ZnO target by RF sputtering 18
2.4 Growth process of ASD-ZnO nanotip 19
2.5 Basic mechanism 20
2.6 Characterization 20
References 27
Chapter 3 28
Results and Discussion 28
3.1 ZnO nanotip structure 28
3.2 Modulate the growth parameter 29
3.3 Nucleation layer 30
3.3.1 Selective region growth 31
3.3.2 Modulation the nucleation layer 31
3.4 Annealing with N2 32
3.4.1 XRD 32
3.4.2 Micro PL 32
3.4.3 FTIR 33
3.5 Stepwise growth of ZnO nanotip 34
3.6 Optical properties of ZnO nanotip on ZnO nucleation layer 34
3.7 Application 35
References 62
Chapter 4 63
Conclusions 63
參考文獻 References
1. Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science (2001) 291, 1947
2. Zhong Lin Wang, Nanostructures of zinc oxide, Materials Today, 2004
3. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, ZnO: growth ,doping and processing, materialstoday june 2004 P34~40
4. S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005
5. Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
6. Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
7. Wei Chen, Xiaoming Tao, Yuyang Liu, Xiaohong Sun, Zhigang Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
8. Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
9. Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
10. Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
11. Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
12. Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
13. Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
14. Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
15. Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
16. S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332
17. H. Nanto, T. Minami, and S. Takata, Phys. Status Solidi A 65, K131 (1981)
18. H. Morgan and D. E. Brodie, Can. J. Phys. 60, 1387 (1982)
19. J. Aronovich, A. Ortiz, and R. H. Bube, J. Vac. Sci. Technol. 16, 994 (1979)
20. R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan,M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca- Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348 (1998)
21. S. Bethke, H. Pan, and B. W. Wesseis, Appl. Phys. Lett. 52, 138 (1988)
22. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, Appl. Phys. Lett. 76 (19) (2000) 2740–2742
23. Zhuo Wang, Xue-feng Qian,_ Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
24. Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
25. Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
26. Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186~196
27. G. S. Kim, S. G. Ansari, H. K. Seo, Y. S. Kim, and H. S. Shin, Growth and morphological study of zinc oxide nanoneedles grown on the annealed titanate nanotubes using hydrothermal method, JOURNAL OF APPLIED PHYSICS 102, 084302 2007
28. Lori E. Greene, Matt Law, Joshua Goldberger, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem. Int. Ed. 2003, 42, 3031 – 3034
29. Youngjo Tak, Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
30. E. Tang, G. Cheng, X. Pang, X. Ma, F. Xing, Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property, Colloid Polym Sci (2006) 284: 422–428
31. H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, P. Roth, Formation and properties of ZnO nano-particles from gas phase synthesis processes, Journal Of Materials Science 37 (2002) 4349 – 4360
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.206.12.31
論文開放下載的時間是 校外不公開

Your IP address is 18.206.12.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code