Responsive image
博碩士論文 etd-0729111-175654 詳細資訊
Title page for etd-0729111-175654
論文名稱
Title
管中粉技術之摻鉻光纖製程與特性
Fabrication and Characteristics of Cr-Doped Fibers with Powder-in-Tube by Drawing-Tower Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-29
關鍵字
Keywords
摻鉻光纖、光纖抽絲塔、摻鉻粉末、管中粉
drawing tower, Cr-doped powder, powder-in-tube, Cr-doped fiber
統計
Statistics
本論文已被瀏覽 5668 次,被下載 1
The thesis/dissertation has been browsed 5668 times, has been downloaded 1 times.
中文摘要
本研究為首次利用管中粉(powder-in-tube,PIT)預型體,搭配光纖抽絲塔(drawing tower)技術研製具有自發輻射螢光頻譜之摻鉻光纖(Cr-doped fiber)。
利用管中棒預型體所抽出之掺鉻光纖,因為其纖芯材料Cr:YAG晶棒的鉻離子濃度經過高溫抽絲製程後,濃度降低,不足以產生足夠的激發螢光。使用摻鉻粉末(Cr-doped powder)的優點在於可以自行調配並提高Cr離子的濃度,藉由掺鉻粉末CaO-Al2O3-BaCO3-MgO-Cr2O3作為光纖纖芯的材料及搭配石英管作為光纖纖殼材料來製作掺鉻光纖,研製出纖芯直徑17.5 μm,纖殼直徑為125 μm的摻鉻光纖。其光纖傳輸損耗為0.74 dB/cm@1550nm,自發輻射螢光頻譜在800~1200nm有50nW/nm強度。
進一步使用多層套管的方式有效降低了纖芯的大小,成功抽出直徑為5 μm的摻鉻光纖,由遠場圖案確定其在波長1260 nm以上即具有單模傳輸的特性,光纖損耗降至0.135 dB/cm@1550 nm。
利用抽絲塔研製摻鉻光纖的優點在於容易控制纖芯的直徑,且光纖大小均一,易與通訊用單模光纖熔接,及寬頻通訊系統的分波多工耦合器耦合。由於寬頻螢光特性,使摻鉻光纖具有潛力發展為寬頻光纖放大器及高解析度光學斷層掃描器之寬頻光源。
Abstract
The success in fabrication of Cr-doped fibers (CDFs) with fluorescence of Cr3+ by powder-in-tube (PIT) method equipped with drawing-tower process is demonstrated for the first time.
The fluorescence intensity of CDFs by fabricated RIT method is weak because the concentration of Cr-ion in Cr:YAG rod is low. However, the fabrication with powder-in-tube (PIT) provides a better solution to improve the concentration of Cr-ion to enhance the fluorescence of CDFs. The Cr-doped powder was composed of CaO-Al2O3-BaCO3-MgO-Cr2O3 as the material of core and then it was poured into the silica tube with outer diameter of 20 mm and inner diameter of 7 mm (20/7) to yield the perform. The CDFs had a 17.5 μm core and a 125 μm cladding. The transmission loss was 0.74 dB/cm at 1550 nm. And the fluorescence intensity of Cr3+ between 800~1200 nm was 50 nW/nm.
To reduce transmission loss further, we used multi-tubes to raise the ratio of cladding to core. According to the principle of conservation of mass, the core diameter of CDFs was 5 μm. The transmission loss was improved more than 50% and it reached to 0.135 dB/cm at 1550 nm. Moreover, a single-mode characteristic of CDF was observed when the propagation wavelengths were longer than 1260 nm.
The CDFs were successfully fabricated by using a fiber drawing-tower technique with PIT method. The demonstration of CDFs makes it possible as a new generation broadband fiber amplifier, a tunable NIR fiber laser for sensor applications, and a broadband source for high resolution OCT.
目次 Table of Contents
中文摘要
英文摘要
致謝
內容目錄 I
圖目錄 III
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 8
第二章 摻鉻粉末之特性 12
2.1 掺鉻粉末的選擇 12
2.2 摻鉻粉末的組成及其吸收和放射頻譜14
第三章 摻鉻光纖之製作 17
3.1 抽絲塔及石英材料的介紹 17
3.2 抽絲塔製程之摻鉻光纖 20
3.2.1 預型體的設計與製作 20
3.2.2 摻鉻粉末燒結 24
3.2.3 抽絲製程及參數 27
第四章 摻鉻光纖之光學特性量測 38
4.1 摻鉻光纖之折射率量測 38
4.2 摻鉻光纖之遠場圖案量測 41
4.3 摻鉻光纖之傳輸損耗量測 45
4.4 摻鉻光纖之自發輻射螢光頻譜 49
4.5 摻鉻光纖之EPMA成分分析 53
第五章 結論與討論 61
5.1 結論 61
5.2 討論 62
參考文獻 65
參考文獻 References
[1] Stamatios V. Kartalopoulos, “Optical bit error rate an estimation methodology,” John Wiley&Sons, p. 58, 2004
[2] M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. of Selected Topics in Quant. Electron., Vol. 38, No. 3, pp. 548-559, May/June 2002.
[3] Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Press, 2002
[4] E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Ch. 4, New York: Wiley, 1994.
[5] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electronics Letters 26, pp. 1645-1646, 1990.
[6] T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett., Vol. 84, pp. 3804-3806, 2004.
[7] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth, Vol. 183, pp. 614-621, 1998.
[8] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters, Vol. 30, pp. 129-131, 2005.
[9] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+ :YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[10] 林廷謙, “單模摻鉻光纖之製程,” 碩士畢業論文, 國立中山大學, 2010
[11] S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., Vol. 77, pp. 818-820, 2000.
[12] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[13] C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[14] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T. Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, “Fabrication of Cr-doped Fibers by Drawing Tower,” OFC, Anaheim, CA, pp. OWI21, 2006.
[15] Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Exp., Vol. 14, pp. 8492-8497, 2006.
[16] Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[17] Y.C. Huang, J.S. Wang, Y.S. Lin, T.C. Lin, W.L. Wang, Y.K. Lu, S.M. Yeh, H.H. Kuo, S.L. Huang, and W.H. Cheng, “Development of Broadband Single-mode Cr-Doped Silica Fibers,” IEEE Photon. Technol. Lett., Vol. 22, No. 12, pp. 914-916, June 15, 2010.
[18] J. Ballato, E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Applied optics, Vol.34, No.30, 6848-6854 (1995).
[19] V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590 (1988)
[20] V. Petricevic, A.B. Bykov, J.M. Evans, and R.R. Alfano, “Room-temperature near-infrared tunable laser operation of Cr4+:Ca2GeO4,” Optics Letters, Vol. 21, pp. 1750-1752 , 1996
[21] J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “ On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys., 105, 053110, 2009
[22] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[23] A.M. Malyarevich, Y.V. Volk, K.V. Yumashev, V.K. Pavlovskii, S.S. Zapalova, O.S. Dymshits, A.A. Zhilin, “Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass,” Journal of Non-Crystalline Solids, 351, 3551–3555 (2005).
[24] U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[25] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[26] J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577, 1999.
[27] Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[28] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[29] Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Ce4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[30] Nextrom OFC20 User Manual.
[31] GE Quartz, Inc. www.ge.com/quartz.
[32] J. Ballato, T. Hawkins, B. Kokuoz, A. James, R. Stolen, and P. Foy, “Novel Crystalline Core Optical Fibers,” OSA, 2009.
[33] 黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2008
[34] J. D. Ayers, “Method of Producing Glass Fiber with Cores of a Different Material,” U.S Patent, Patent No. : US 5110334, 1992
[35] EXFO-NR9200 操作手冊
[36] Gerd Keiser, “Optical Fiber Communication,” Third Edition, mcgraw-Hill, 2000.
[37] Y. Shamir, Y. Sintov, E. Shafir, M. Shtaif, “Beam quality output of a few-modes fiber seeded by an off-center single-mode fiber source,” Opt. Lett., Vol. 34, pp. 1795-1797, 2009.
[38] E. Munin, A. B. Villaverde, M. Bass and K. C. Richardson, “Optical Absorption, Absorption Saturation and a Useful Figure of Merit for Chromium Doped Glasses, “ J. Phys. Chem Solids Vol 58. No. I. pp. 51-57, 1997.
[39] 劉文貴, “超寬頻摻鉻光纖製程與特性之研究, ” 碩士畢業論文, 國立中山大學, 2007
[40] M. Y. Sharonov, A. B. Bykov, S. Owen, V. Petricevic, and R. R. Alfano, “Spectroscopic study of transparent forsterite nanocrystalline glass–ceramics doped with chromium, “J. Opt. Soc. Am. B/Vol. 21, No. 11/November 2004.
[41] G. H. Beall, L. R. Pinckney, W. D. Vockroth, and J. Wang, “Method for making nanocrystalline glass-ceramic fibers,” U.S Patent, Patent No. : US 6698246 B1, 2004.
[42] N.K. Goel , R.H. Stolen , S.Morgan , J.K. Kim , D. Kominsky, and Gary Pickrell,” Core-suction technique for the fabrication of optical fiber preforms ,” Optical Society of America , Optic Letters , Vol. 31, No. 4 , 2006
[43] R. A. Martin, and J. C. Knight, “Silica-Clad Neodymium-Doped Lanthanum Phosphate Fibers and Fiber Lasers,” Opt. Lett., Vol. 18, pp. 574-576, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.186.92
論文開放下載的時間是 校外不公開

Your IP address is 18.117.186.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code