Responsive image
博碩士論文 etd-0729113-130508 詳細資訊
Title page for etd-0729113-130508
論文名稱
Title
高能量束控制之鑽孔效率
controlled efficiency of drilling with a high intensity beam
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-26
繳交日期
Date of Submission
2013-08-29
關鍵字
Keywords
孔洞、二相垂直環狀流、崩塌、超音速流
collapse, Keyhole, two-phase vertical annular flow, supersonic flow
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
在具有高能量束的鑽孔過程中,造成了孔洞的崩塌。在本研究中,我們藉由基礎的熱物理學原理,探討在高能量束鑽孔中,孔洞產生崩塌現象的形成機制。
  合適的方法是探討在不同截面之垂直管中超音速流的二相氣-液分散特性,在此特別注意栓塞流與環狀二相流的過渡情況。這顯示出孔洞崩潰的發生,夾帶導致孔洞內液層表面發生嚴重的波浪狀變形。
  本研究提供了一個重要的方法,以顯示在材料加工,包裝和製造技術中,鑽孔遭遇到的問題。
Abstract
Drilling with a high intensity energy beam can beincapable if the keyhole induced is collapsed. In this work, we identify the conditions for the keyhole collapse during high power density beam drilling from fundamental principles of thermal physics. The approach adapted is to probe the supersonic flow behavior of the two-phase vapor-liquid dispersion in a vertical keyhole of varying cross-section, paying particular attention to the transition between the slug and annular flows. It shows that the keyhole collapse occur from entrainment around the keyhole wall resulting in a severely deformed wavy shape of the inner liquid surface of the keyhole. This work provides a critical investigation to reveal incapability of drilling encountered in materials processing, packaging and manufacturing technologies.
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
符號說明 viii
第一章 緒論 1
1.1 本文架構 1
1.2 前言與文獻回顧 2
1.3 研究動機 5
1.4 研究方法與目標 7
第二章 系統模型假設與分析 8
2.1 理論模型與假設 8
2.2 自由表面形狀 10
2.3 孔洞中之蒸氣流動 13
2.4 液層中之液體壓力 16
2.5 液體-固體交界面形狀 17
第三章 結果與討論 18
第四章 結語與未來展望 22
參考文獻 34
參考文獻 References
[1] T. Debkoy and S. A. David, Rev. Modem Phys. 67. 85( 1995).

[2] S. A. David and T. DebRoy, Science 257, 497 (1992).

[3] H. Zhao and T. DebRoy, J. Appl. Phys. 9302). 10089-10096 (2003).

[4] M. Pastor, H. Zhao, R. P. Martukanitz, and T. DebRoy, Weld. J. 78,
207s(l999).

[5] F. H. Kaplan, M. Mizutani, S. Katayama, and A. Matsunawa, J. Phys. D:
Appl. Phys. 35, 1218 (2002).

I6] Kawaguchi, S. Tsukamoto, H. Honda, and G Arakane, Proc. the 22nd
Int. Congress on Applications of Lasers and Electro-Optics 2003,
LMP - Section A, pp. I68-175.

[7] S. Tsukamoto, G. Arakane, H. Honda, and S. Kuroda, 2004, Proc. the
23th Int. Congress on Applications of Lasers and Elcctro-Optics 2004,
pp. 11-17.

[8] Kat and J. Mazumder, J. Appl. Phys. 78(ll), 6353-6360 (1995).

9] Y. Lee, S. H. Ko, D. F. Farson, and C. D. Yoo, J. Phys. D.'App1. Phys.
35, 1570 (2002).

[10] R. Rai and T. DebRoy, J. Phys. D: Appl. Phys. 39, l257(2006).

[11] R. Rai R, G. G. Roy, and T. DebRoy, J. Appl. Phys. 101(5), Article
Number: 054909 (2007).

[12] R. Rai, P Burgardt, J .0. Milewski, T. J. Lienert and T. DebRo}', J
Phys. D: Appl. Phys. 42(2), Article Number: 025503 (2009).

[13] R. Rai, J. W. Elmer, T. A. Palmer, and T. DebRoy, J Phys. D: Appl.
Phys. 40(18), 5753-5766 (2007).

[14] Zhou, H. L. Tsai, and P. C. Wang, J Heat Transfer 128, 680 (2006).

[15] X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, and R. Greif, J Appl. Phys.
95, 816 (2004).

[16] G. B. Wallis, One-Dimensional Two-Phase Flow (McGraw-Hill, New
York, 1969).

[17] G. F. Hewitt, "Chapter 2, Liquid-Gas Systems," in Hetsroni, G. (editor),
Handbook of Multiphase Systems (Hemisphere Pub., New York, 1982).

[18] P. B. Whalley, Boiling, Condensation, and Gas-Liquid Flow
(Clarendon Press, Oxford, 1987).

[19] J. G. Collier and J. R. Thome, Convective Boiling and Condensation,
3rd ed.(Clarendon Press, Oxford, 1994).

[20] Y. Taitel, D. Bornea, and A. E. Dukler, A1ChE J. 26, 345 (1980).

[21] Ishii, "Chapter 2.4, Wave Phenomena and Two-Phase Flow
Instabilities," in Hetsroni, G. (editor), Handbook of Multiphase Systems
(Hemisphere Pub., New York, 1982).

[22] H. Han and K. Gabriel, J. Fluids Eng. 129, 293 (2007).

[23] C. R. Arnold, and G. F. Hewitt, J. Photogr. Sci. 15, 97 (1967).

[24] Petalas and K. Aziz, J. Canadian Petroleum Tech, 39. 43(2000).

[25] V. F. Reznichenko and A. M. Verigin, Svar. Profs. 6, 25 (1986).

[26] J. C. B. Lopes and A. E. Dukler, AIChE J. 32, 1500 (1986).

[27] L.Cheng, Chem. Eng. Comm. 194, 975(2007).

[28] R. Viskanta, 5oth Anniversary Issue, J. Heat Transfer 110. 1205(1988).

[29] W.D. Bennon and F.P. Incropera, Int. J Heat M/ass Transfer 30,
2161(1987).

[30] S. I. Anisirnov, Soviet Physics JETP 27, 182(1968).

[31] C. J. Knight, AIAA J. 17, 519(1979).

[32] Poueyo-Verwaerde, R. Fabbro, G. Deshors, A. M. de Frutos, and J. M.
Orza, J. Appl. Phys. 74, 5773 (1993).

[33] Z. Szymariski and J. Kurzyna, J Appi. Phys. 76, 7750 (1994).

[34] R. Miller and T. DebRo_V, J. Appl. Phys. 68, 2045(1990).

[35] F. Modest, J. Heat Transfer 128, 653 (2006).

[36] S. Wei and C. Y. Ho, Int. J. Heat Mass Transfer 41, 3299 (1998).

[37] H. Shapiro, T he Dynamics and Thermodynamics of Compressible Fluid
Flow, 2 Vols. (Wiley, New York, 1953)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.144.81.21
論文開放下載的時間是 校外不公開

Your IP address is 54.144.81.21
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code