Responsive image
博碩士論文 etd-0729114-011633 詳細資訊
Title page for etd-0729114-011633
論文名稱
Title
迴焊翹曲對2.5D IC銅柱焊接製程接合影響之有限元素模擬分析
The Bonding Effects of Reflow Warpage on 2.5D IC Copper Pillar Bump Process by Using Finite Element Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-11
繳交日期
Date of Submission
2014-08-29
關鍵字
Keywords
2.5維積體電路、銅柱焊接製程、翹曲、虛焊、有限元素法
finite element method, cold joint, 2.5D integrated circuits, copper pillar bump, warpage
統計
Statistics
本論文已被瀏覽 5757 次,被下載 239
The thesis/dissertation has been browsed 5757 times, has been downloaded 239 times.
中文摘要
由於半導體製程持續往高密度積體電路(Integrated Circuit, IC)的發展,進而許多研究開始投入2.5維與3維IC的封裝技術。在2.5維IC的結構中,銅柱焊接製程已慢慢成為主流的接合製程。近來,發現在銅柱焊接製程時,會有虛焊缺陷的情形,目前業界認為造成此缺陷的主要原因可能為結構受熱後的翹曲所致。
本研究主要透過有限元素法建立2維之2.5維IC模型,模擬迴焊製程中所產生的翹曲對於銅柱接合的影響,且藉由ANSYS脫黏的設定,找出銅柱脫黏與產生裂縫的接合力範圍。最後藉由改變矽晶片層的厚度、銅柱的材料結構與迴焊溫度,探討其對於IC整體的翹曲與接合力範圍之影響。
由模擬結果可知,在不考慮對位不準的條件下,依據本研究所採用之數值模擬模型顯示,若接合力大於285MPa則不會有裂縫產生;若接合力小於50MPa則會發生脫黏。矽晶片層厚度方面,與矽晶片層厚度為50um時相比,當矽晶片層厚度為100um與150um時,其產生裂縫的臨界接合力約上升了14與30%,翹曲量則約上升了13.53與25.05%。銅柱材料結構方面,鎳層的加入,直接降低了整體的翹曲量,以及臨界接合力的提高,以Type 3來說,與原模型相較,其臨界接合力提高了8.77%,翹曲則是降低了0.77%;而金層的加入,有助於降低鎳層所帶給焊料的應力集中,進而降低接合之臨界接合力,以Type 5來說,比起沒有金層的Type 3,其臨界接合力下降了4.84%。溫度效應方面,與迴焊溫度為100oC相比,當迴焊溫度為150oC、200oC與240oC時,其產生裂縫的臨界接合力呈非線性地上升了31.71、36.59與39.02%,翹曲量方面大致隨溫度上升呈線性遞增46.47、74.83以及77.89%。
Abstract
As the semiconductor manufacturing industry continue to develop high-density integrated circuits (IC), many studies of 2.5D and 3D IC packaging technology are being carried out. The copper pillar bump bonding process has become the mean means of fabricating 2.5D IC structures. Recently, cold joint defects have been detected in copper pillar welding. Currently the industry believes that structural warping by heating is likely to be the main cause of the formation of defects.
This work establishes a two-dimensional model of the 2.5D IC by using the finite element method to simulate the impact of bonding with warping on welding process, and determines the range of bonding forces when copper pillars debond and generate cracks, using the debonding setting in ANSYS. Finally, the impact of an IC on warping and the range of bonding forces is studied by changing the thickness of the die layer, the material structure of the copper pillars, and the reflow temperature.
The results of the numerical simulation model that is used in this research, which does not consider the alignment show that when the bonding force exceeded 285MPa, no crack appeared. When the bonding was less than 50MPa, debonding occurred. Compared with 50um thickness of the die, when the thickness was changed to 100 and 150um, the critical bonding forces of crack were increased by 14 and 30%, respectively, and the warpages were increased 13.53 and 25.05%, respectively. Adding a nickel layer to the copper pillars directly reduced the overall warpage and increased critical bonding force. For example, the layer improved the critical bonding force of type 3 by 8.77%, reduced the warpage by 0.76%. Adding the gold layer reduced the stress concentration in the solder that was caused by the nickel layer, reducing the critical bonding force; the type 5 had a 4.84% lower bonding force that the type 3, which had no gold layer. Compared with 100oC of reflow temperature, when the temperature was changed to 150, 200, and 240oC, the critical bonding forces were increased by 31.71, 36.59 ,and 39.02%, respectively, and the warpages were increased approximately linearly with temperature by 46.47, 74.83 and 77.89%, respectively.
目次 Table of Contents
目錄
誌 謝 ii
摘 要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 電子封裝之發展[8] 2
1.2.1 2.5D IC封裝技術簡述 3
1.2.2 IC封裝翹曲成因及翹曲定義 3
1.2.3銅柱焊接製程簡介[7, 13-15] 4
1.3 文獻回顧 5
1.3.1 銅柱焊接製程之優點 5
1.3.2 銅柱焊接製程之缺點 6
1.3.3 銅柱焊接製程之改善 8
1.4 錫材料簡介[46] 10
1.5 研究動機與目標 10
1.6 全文架構 11
第二章 基礎理論介紹 21
2.1 有限元素法簡介[55] 21
2.2套裝軟體ANSYS 15.0/Workbench簡介[56, 57] 22
2.2.1變形理論 25
2.2.2脫黏理論(Debonding) 26
2.3連續多重耦合分析介紹 27
第三章 研究方法 33
3.1假設條件 34
3.2 模擬模型之建構與設定 35
3.2.1 元素模型與材料模型選用 35
3.2.2 模擬模型之結構與尺寸 36
3.2.3 材料參數設定 36
3.2.4 網格劃分 37
3.2.5 邊界條件、負載方式與接觸設定 37
3.2.6網格收斂性分析 38
第四章 結果與討論 51
4.1 模擬結果分析 51
4.1.1 接合力對翹曲量之影響 52
4.1.2 接合力對接合面之影響 53
4.1.3 接合力對焊料之影響 53
4.2 矽晶片層厚度之影響 54
4.3 銅柱材料結構之影響 55
4.4 迴焊溫度之影響 57
第五章 結論與未來展望 96
5.1 結論 96
5.2 未來展望 97
參考文獻 98
參考文獻 References
[1] T. Agerwala and M. Gupta, “Systems research challenges: A scale-out perspective,” IBM journal of research and development, vol. 50, pp. 173-180, 2006.
[2] G. E. Moore, Cramming more components onto integrated circuits: New York:McGraw-Hill, 1965.
[3] http://www.eetimes.com/document.asp?doc_id=1279540, 2012/4/8.
[4] Y. S. Deng and W. Maly, “2.5 D system integration: a design driven system implementation schema,” in Proceedings of the 2004 Asia and South Pacific Design Automation Conference, pp. 450-455, 2004.
[5] M.-J. Wang, C.-Y. Hung, C.-L. Kao, P.-N. Lee, C.-H. Chen, C.-P. Hung, et al., “TSV technology for 2.5 d IC solution,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, pp. 284-288, 2012.
[6] M. Motoyoshi, “Through-silicon via (TSV),” Proceedings of the IEEE, vol. 97, pp. 43-48, 2009.
[7] W. Koh, B. Lin, and J. Tai, “Copper pillar bump technology progress overview,” in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference, pp. 1-5 , 2011.
[8] http://big5.chinairn.com/news/20140327/160047201.html, 2014/3/27.
[9] P. Lall, K. Patel, and V. Narayan, “Model for prediction of package-on-package warpage and the effect of process and material parameters,” in Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd, pp. 608-622, 2013
[10] 黃聖杰,IC 封裝 3-D 殘留應力的模擬與分析 (II),成功大學機械工程學系,國科會研究報告,2003。
[11] 叢培倫,IC 封裝後熟化製程模擬之研究,成功大學機械工程學系碩士在職專班學位論文, 2012。
[12] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION, Package Warpage Measurement of Surface-Mount Integrated Circuits at Elevated Temperature, October, 2009.
[13] http://ssttpro.acesuppliers.com/semiconductor/Magazine_Details_Index_Id_125
3.html, 2008/8/12.
[14] B. Ebersberger and C. Lee, “Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects,” in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, pp. 59-66, 2008.
[15] E. J. Vardaman, “New developments in flip chip,” in VLSI Packaging Workshop of Japan, 2008. VPWJ 2008. IEEE 9th, pp. 99-101, 2008.
[16] B. K. Appelt, H. Chung, C. Chen, R. Wang, and M. Hung, “Low cost fcCSP based on cu pillar,” in Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th, 2011, pp. 236-239, 2011.
[17] B. Tunaboylu, “Testing of Copper Pillar Bumps for Wafer Sort,” Components, Packaging and Manufacturing Technology, IEEE Transactions on, vol. 2, pp. 985-993, 2012.
[18] S. Lee, Y. Guo, and C. Ong, “Electromigration effect on Cu-pillar (Sn) bumps,” in Electronic Packaging Technology Conference, EPTC 2005. Proceedings of 7th, pp. 5, 2005.
[19] M. Gerber, C. Beddingfield, S. O'Connor, M. Yoo, M. Lee, D. Kang, et al., “Next generation fine pitch cu pillar technology—enabling next generation silicon nodes,” in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, pp. 612-618, 2011.
[20] B. J. Kim, G. T. Lim, J. Kim, K. Lee, Y. B. Park, and Y. C. Joo, “Intermetallic compound and Kirkendall void growth in Cu pillar bump during annealing and current stressing,” in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, pp. 336-340, 2008.
[21] C. C. Lee, L. C. Hung, P. Y. Li, M.-C. Hsieh, H. Perng, and V. Wang, “Detection of cold joint defect in copper pillar bumps aided by underfill filler segregation phenomenon,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International, pp. 415-418, 2011.
[22] A. Huffman, M. Lueck, C. Bower, and D. Temple, “Effects of assembly process parameters on the structure and thermal stability of Sn-capped Cu bump bonds,” in Electronic Components and Technology Conference, 2007. ECTC'07. Proceedings. 57th, pp. 1589-1596, 2007.
[23] B. J. Kim, G. T. Lim, J. Kim, K. Lee, Y. B. Park, and Y. C. Joo, “Reliability of Cu pillar bump for flip chip and 3-D SiP,” in Physical and Failure Analysis of Integrated Circuits, 2008. IPFA 2008. 15th International Symposium on the, pp. 1-5, 2008.
[24] P. J. Cheng, C. Chung, T. Pai, and D. Chen, “A challenge of 45 nm extreme low-k chip using Cu pillar bump as 1 st interconnection,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, pp. 1618-1622, 2010.
[25] R. Labie, F. Dosseul, T. Webers, C. Winters, V. Cherman, E. Beyne, et al., “Outperformance of Cu pillar flip chip bumps in electromigration testing,” in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, pp. 312-316, 2011.
[26] J. M. Park, J. J. Park, S. H. Kim, and Y. B. Park, “Current stressing effects on interfacial reaction characteristics of fine-pitch microbump,” in Electronic Materials and Packaging (EMAP), 2012 14th International Conference, pp. 1-3, 2012.
[27] Y. Orii, K. Toriyama, S. Kohara, H. Noma, K. Okamoto, and K. Uenishi, “Effect of preformed Cu-Sn IMC layer on electromigration reliability of solder capped Cu pillar bump interconnection on an organic substrate,” in CPMT Symposium Japan, 2012 2nd IEEE, pp. 1-4, 2012.
[28] Y. S. Lai, Y. T. Chiu, C. W. Lee, Y. H. Shao, and J. Chen, “Electromigration reliability and morphologies of Cu pillar flip-chip solder joints,” in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, pp. 330-335, 2008.
[29] 陳柏宗、林彥辰、鐘涵琳、何政恩,錫在Cu6Sn5介金屬相之電遷移行為之研究,99材料年會,2010。
[30] B. Vandevelde, R. Labie, V. Cherman, T. Webers, C. Winters, E. Beyne, et al., “Electromigration, fuse and thermo-mechanical performance of solder bump versus Cu pillar flip chip assemblies,” in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011 12th International Conference on, pp. 1-6, 2011.
[31] J. Kim, M.-H. Jeong, J.-W. Kim, K. Lee, Y.-B. Park, O. Song, et al., “Current stressing effects on the reliability of Cu pillar bump with shallow solder,” in Physical and Failure Analysis of Integrated Circuits (IPFA), 2010 17th IEEE International Symposium on the, pp. 1-4, 2010.
[32] C. T. Feng, M. Hsu, S. Hsu, and S. Su, “Optimized Cu Pillar Bump flip chip package design for ultralow k device application,” in Advanced Packaging Materials (APM), 2013 IEEE International Symposium on, pp. 15-24, 2013.
[33] C. Lee, “Interconnection with copper pillar bumps: Process and applications,” in Interconnect Technology Conference, 2009. IITC 2009. IEEE International, pp. 214-216, 2009.
[34] J. Jhou, M. Tsai, C. Wu, and K. Chen, “Thermal stresses and deformations of Cu pillar flip chip BGA package: Analyses and measurements,” in Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, pp. 1-4, 2010.
[35] E. Suhir, “Stresses in bi-metal thermostats,” Journal of Applied Mechanics, vol. 53, pp. 657-660, 1986.
[36] Y. Wang, K. H. Lu, J. Im, and P. S. Ho, “Reliability of Cu pillar bumps for flip-chip packages with ultra low-k dielectrics,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, pp. 1404-1410, 2010.
[37] J. Lee, D. M. Fernandez, M. Paing, Y. C. Yeo, and S. Gao, “Electroless Ni Plating to Compensate for Bump Height Variation in Cu–Cu 3-D Packaging,” Components, Packaging and Manufacturing Technology, IEEE Transactions on, vol. 2, pp. 964-970, 2012.
[38] K. Toriyama, Y. Takeoka, K. Okamoto, H. Noma, and Y. Orii, “Joint reliability study of solder capped metal pillar bump interconnections on an organic substrate,” in CPMT Symposium Japan, 2012 2nd IEEE, pp. 1-4, 2012.
[39] 葉昱廷,電遷移效應對 Sn5Ag/Cu界面反應的影響,中央大學化學工程與材料工程學系學位論文,2008。
[40] Y. K. Sa, S. Yoo, Y.-S. Shin, M. K. Han, and C.-W. Lee, “Joint properties of solder capped copper pillars for 3D packaging,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, pp. 2019-2024, 2010.
[41] J. W. Nah, K. Chen, J. Suh, and K. Tu, “Electromigration study in flip chip solder joints,” in Electronic Components and Technology Conference, 2007. ECTC'07. Proceedings. 57th, pp. 1450-1455, 2007.
[42] Y. S. Lai and J. M. Song, “Electromigration reliability with respect to Cu content in solder joint system,” in Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th, pp. 1160-1163, 2008.
[43] S. R. Rao, “A more practical method of predicting flip chip solder bump electromigration reliability,” in Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd, pp. 629-634, 2013.
[44] H. N. Huang, Y. C. Liao, W. T. Tseng, C. T. Lin, and S. Chiu, “Study of underfill material for fine pitch Cu pillar bump,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International, pp. 150-152, 2011.
[45] S. W. Lee, B. W. Jang, J. K. Kim, Y. H. Jung, Y. B. Kim, H. G. Song, et al., “A study on the chip-package-interaction for advanced devices with ultra low-k dielectric,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, pp. 1613-1617, 2012.
[46] http://zh.wikipedia.org/wiki/锡.
[47] http://www.metallurgy.nist.gov/solder/clech/Sn-Ag_Other.htm#Young.
[48] http://www.metallurgy.nist.gov/solder/clech/Sn-Ag-Cu_Other.htm#Young.
[49] M. W. Lee, J. Y. Kim, J. D. Kim, and C. H. Lee, “Below 45nm low-k layer stress minimization guide for high-performance flip-chip packages with copper pillar bumping,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, pp. 1623-1630, 2010.
[50] M. C. Hsieh, C. C. Lee, L. C. Hung, V. Wang, and H. Perng, “Parametric study for warpage and stress reduction of variable bump types in fcFBGA,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International, pp. 115-118, 2011.
[51] M. C. Hsieh, C. C. Lee, and L. C. Hung, “Comprehensive Thermomechanical Analyses and Validations for Various Cu Column Bumps in fcFBGA,” Components, Packaging and Manufacturing Technology, IEEE Transactions on, vol. 3, pp. 61-70, 2013.
[52] M. C. Hsieh, C. C. Lee, and L. C. Hung, “Reliability assessments and designs for fine pitch flip chip packages with Cu column bumps,” 2012.
[53] http://www.matweb.com/search/DataSheet.aspx?MatGUID=64d7cf04332e428d
bca9f755f4624a6c.
[54] 頎邦科技, http://www.chipbond.com.tw/tw_service_02_32.aspx.
[55] T. R. Chandrupatla, D. Belegundu, T. Ramesh, and C. Ray, Introduction to finite elements in engineering. Prentice-Hall Englewood Cliffs, NJ, 2012.
[56] 蔡國忠,有限元素分析及工程應用 ANSYS Workbench,台北,台灣: 易習圖書,2008。
[57] H. H. Lee, Finite Element Simulations with ANSYS Workbench 14: SDC publications, 2012.
[58] ANSYS 15.0 Help, 2013.
[59] J. Yang, “Copper pillar bumped sapphire flip chip on lead-frame package development,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, pp. 457-464, 2012.
[60] http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html, 2012/07/15.
[61] K. Dai and L. Shaw, “Distortion minimization of laser-processed components through control of laser scanning patterns,” Rapid Prototyping Journal, vol. 8, pp. 270-276, 2002.
[62] S. Narasimalu, “Wire bond challenges in low- k devices,” Microelectronics International, vol. 25, pp. 34-40, 2007.
[63] http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html, 2010/12/2.
[64] Joint Industry Standard, “IPC/JEDEC J-STD-020D.1:Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices,” JEDEC Solid State Technology Association, 2008.
[65] J. E. Shigley, Shigley's mechanical engineering design: Tata McGraw-Hill Education, 2011.
[66] K. Iwanabe, T. Shuto, K. Noda, S. Nakai, and T. Asano, “Room-temperature microjoining using ultrasonic bonding of compliant bump,” in Low Temperature Bonding for 3D Integration (LTB-3D), 2012 3rd IEEE International Workshop on, pp. 167-170, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code