Responsive image
博碩士論文 etd-0729114-151353 詳細資訊
Title page for etd-0729114-151353
論文名稱
Title
以微波水解搭配吸波材料提高植生復育植物產醣效率之研究
Enhancing saccharification of phytoremediation biomass using both dilute acid hydrolysis and microwave absorbing materials in the microwave system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-09-02
關鍵字
Keywords
微波系統、稀酸前處理、植生復育植物、吸波材料、生質酒精、全因子實驗設計
Microwave, Phytoremediation biomass, Dilute acid pretreatment, Microwave absorbing materials, Full factorial experimental design, Bioethanol
統計
Statistics
本論文已被瀏覽 5664 次,被下載 219
The thesis/dissertation has been browsed 5664 times, has been downloaded 219 times.
中文摘要
本研究使用植生復育之植物(蔗渣、芒草及布袋蓮)作為製作生質酒精之原料,以全因子實驗設計法探討不同之操作因子對纖維水解之醣化率,分析反應溫度、水解時間、溶劑體積及稀硫酸濃度及植物種類對產醣率之影響。另使用微波加熱系統搭配吸波材料進行醣化水解反應,期能達到降低反應時間提高產率之效果。最後,本研究將水解前處理完之纖維殘渣以ESEM、XRD及FTIR儀器進行分析,觀察經水解後殘渣表面及結構變化,藉此輔證醣化率提升導致纖維素結構呈現破壞及減少之影響。
經由研究結果顯示,以全因子實驗設計法評估其纖維轉醣效能,影響先後順序為反應溫度、水解時間、稀硫酸濃度及溶劑體積。將蔗渣作為產醣原料,在反應溫度為100 ℃、水解時間30 min、溶劑體積30 mL及稀硫酸濃度3%之操作條件下,可獲得最佳產醣濃度約為6520 mg/L及最佳醣化率約為19.58%。將芒草為產醣原料,在反應溫度為100 ℃、水解時間30 min、溶劑體積30 mL及稀硫酸濃度3%之操作條件下,可獲得最佳產醣濃度約為5680 mg/L及最佳醣化率約為17.05%。將布袋蓮為產醣原料,在反應溫度為100 ℃、水解時間30 min、溶劑體積30 mL及稀硫酸濃度3%之操作條件下,可獲得最佳產醣濃度約為4650 mg/L及最佳醣化率約為13.94%。經由比較三種原料作物,可得知蔗渣作為產醣作物效果最佳。另從ESEM、XRD及FTIR之觀察分析,皆能看出纖維素會隨著醣化率的提高逐漸變化,纖維素不斷被破壞及減少。且經微波搭配奈米級氧化鐵之吸波材料能減少約32至40%之反應時間,能有效提升產醣率。
Abstract
In this study, revegetation of plants (Bagasse, Miscanthus floridulus and Eichhornia crassipes) was assessed to be starting as materials for producing bioethanol. The method of full factorial experimental design is used to explore different parameters on conversion rates for hydrolysis reaction of fiber into fermentation sugars and analysis the influence of the reaction temperature, hydrolysis time, solvent volume, dilute sulfuric acid concentration and plant species on fermentation sugars. The hydrolysis reduces the effect of improving the reaction time by using the microwave system with absorbing materials. The fibers were observed the residue surface and structural changes after hydrolysis from the X-ray Diffractometer (XRD), Fourier Transform Infrared Spectrometry (FTIR) and Environment Scanning Electron Micrograph (ESEM). Therefore, it can be proved that the increase in saccharification rate can lead to the impact in destroyed and reduce of the cellulose structure presents.
The result shows that the order of effect for reaction temperature, hydrolysis time, dilute sulfuric acid concentration and solvent volume for fiber of water hyacinth was investigated by the method of full factorial experimental design under the operational condition of 100℃ reaction temperature, 30 min hydrolysis time, 30 mL solvent volume and 3% dilute sulfuric acid concentration. Using the bagasse, miscanthus and mater hyacinth as the raw material, the best operational condition for optimal sugar concentration was about 6520 mg/L, 5680 mg/L and 4650 mg/L. The saccharification rate was about 19.58%, 17.05% and 13.94%. Comparing with these three raw materials, sugar crops bagasse has the best effect. From the analysis of the ESEM, XRD and FTIR, the cellulose will increase as the change of saccharification rate. And it can effectively enhance the saccharification rate and reduce approximately 32% to 40% of reaction time by microwave system with nanoscale iron oxide absorbing materials.
目次 Table of Contents
謝誌 i
摘要 iii
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 3
第二章 文獻回顧 4
2-1 能源概況 4
2-2 生質酒精 7
2-2-1 生質酒精之發展 7
2-2-2 國內、外生質酒精經濟效益分析 7
2-2-2 生質酒精之原料 11
2-3 木質纖維素 14
2-3-1 纖維素 15
2-3-2 半纖維素 16
2-3-2 木質素 17
2-4 纖維酒精前處理介紹 19
2-4-1 物理前處理 20
2-4-2 化學前處理 21
2-4-3 物理-化學前處理 22
2-4-4 生物前處理 23
2-5 植生復育技術 (Phytoremediation) 25
2-5-1 植物復育機制 26
2-6 吸波材料 29
2-6-1 傳統吸波材料 29
2-6-2 奈米吸波材料 29
2-6-3 氧化鐵磁性奈米粒子 30
2-7 實驗設計法原理 32
2-8 微波系統原理 35
第三章 研究方法 37
3-1 研究架構與流程 37
3-2 木質纖維素產醣製作材料與設備 39
3-2-1 實驗材料與藥品 39
3-2-2 原料來源及前處理 40
3-2-3 實驗設備 40
3-3 實驗設計法 42
3-3-1 以全因子實驗設計法探討稀硫酸水解試驗 42
3-3-2 變異數分析 (Analysis of Variance) 44
3-4 木質纖維素成分分析 44
3-5 木質纖維素醣化方法 47
3-5-1 木質纖維素水解實驗流程 47
3-5-2 反應參數 48
3-6 濾液參數分析 48
3-6-1 還原醣DNS分析 48
3-6-2 醣類物種分析 50
3-6-3 非揮發性有機碳 (non-purgable organic carbon, NPOC) 51
3-6-4 產醣率計算 52
3-7 殘渣結構分析 53
3-7-1 表面結構分析 53
3-7-2 晶相鑑定 53
3-7-3 官能基分析 53
第四章 結果與討論 55
4-1 原料纖維組成分析 55
4-1-1 木質纖維素成分分析 55
4-2 蔗渣在不同反應條件操作下對產醣率之影響 58
4-2-1 以實驗設計法探討蔗渣產醣率之影響 58
4-2-2 以不同操作條件下探討蔗渣水解濾液NPOC值及醣類測定 62
4-2-3 以實驗設計法對蔗渣轉醣率之最適應用 64
4-2-4 以環境式掃描電子顯微鏡進行蔗渣纖維表面觀察 70
2-5 以X光粉末繞射儀進行蔗渣纖維晶相鑑定 72
4-2-6 以傅立葉轉換紅外光譜儀進行蔗渣纖維官能基分析 73
4-3 芒草在不同反應條件操作下對產醣率之影響 75
4-3-1 以實驗設計法探討芒草產醣率之影響 75
4-3-2 以不同操作條件下探討芒草水解濾液NPOC值及醣類測定 79
4-3-3 以實驗設計法對芒草轉醣率之最適應用 81
4-3-4 以環境式掃描電子顯微鏡進行芒草纖維表面觀察 87
4-3-5 以X光粉末繞射儀進行芒草纖維晶相鑑定 89
4-3-6 以傅立葉轉換紅外光譜儀進行芒草纖維官能基分析 90
4-4 布袋蓮在不同反應條件操作下對產醣率之影響 92
4-4-1 以實驗設計法探討布袋蓮產醣率之影響 92
4-4-2 以不同操作條件探討布袋蓮水解濾液NPOC值及醣類測定 96
4-4-3 以實驗設計法對布袋蓮轉醣率之最適應用 98
4-4-4 以環境式掃描電子顯微鏡進行布袋蓮纖維表面觀察 104
4-4-5 以X光粉末繞射儀進行布袋蓮纖維晶相鑑定 106
4-4-6 以傅立葉轉換紅外光譜儀進行布袋蓮纖維官能基分析 107
4-5 比較植生復育植物對產醣率之影響 109
4-5-1 加熱方式對植物產醣率之影響 109
4-5-2 反應時間對植物產醣率之影響 111
4-5-3 反應溫度對植物產醣率之影響 113
4-5-4 稀硫酸濃度對植物產醣率之影響 115
4-6 添加吸波材料之效益及相關成本分析 117
4-6-1 以添加吸波材料減少反應時間達到增加產率之效益 117
4-6-2 比較加熱方式對經濟成本之效益 119
第五章 結論與建議 121
5-1 結論 121
5-2 建議 122
參考文獻 123
參考文獻 References
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B., 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, pp.675–685.
Amelia, R., Wu, W.D., Chen, X.D., Selomulya, C., 2012. Assembly of magnetic microcomposites from low pH precursors using a novel micro-fluidic-jet-spray-dryer. Chemical Engineering Research and Design, 90, pp. 150–157.
Amon, P.J., Agrawal, A., Shelley, L.M., Opperman, C.B., Enright, P.M., Clemmer, D.N., Slusser, T., Lach, J., Sobolewski, T., Gruner, E., Entingh, C.A., 2007. Development of wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecological Engineering, 30(1), pp. 51–66.
Badal, C.S., Cotta, M.A., 2007. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme and Microbial Technology, 41, pp. 528–532.
Balat, M., Balat, H., Oz, C., 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, pp. 551–573.
Balat, M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, pp.858–875.
Bals, B., Rogers, C., Jin, N., Balan, V., Dale, B.E., 2010. Evaluation of ammonia fiber expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnology for Biofuels, 4, pp.3–1.
Bals, B., Wedding, C., Balan, V., Sendich, E., Schols, H.A., Dale, B., 2011. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology, 102, pp.1277–1283.
Banerjee, S., Mudliar, S., Sen, R., Balendu, B.G., Chakrabarti, T., Pandy, R.A., 2004. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Biorg, 4, pp.77–93.
Beery, K.E., Ladisch, M.R., 2001. Chemistry and properties of starch based desiccants. Enzyme and Microbial Technology, 28, pp. 573–581.
Behera, S., Arora, R., Nandhagopal, N., Kumar, S., 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, pp. 91–106.
Bura, R., Chandra, R., Saddler, J., 2009. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog, Special Issue, 25, pp.315–322.
British Petroleum, B.P., 2007. Statistical Review of World Energy.
Cardona, C.A., Quintero, J.A., Paz, I.C., 2010. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology, 101, pp. 4754–4766.
Castañón-Rodríguez, J.F., Torrestiana-Sánchez, B., Montero-Lagunes, M., Portilla-Arias, J., Ramírez de León, J.A., Aguilar-Uscanga, M.G., 2013. Using high pressure processing (HPP) to pretreat sugarcane bagasse. Carbohydrate Polymers, 98, pp. 1018–1024.
Chandel, A.K., Chan, E., Rudravaram, R., Narasu, M.L., Rao, L.V., Ravindra, P., 2007. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Review, 2, pp.14–32.
Chang, V.S., Holtzapple, M.T., 2000. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotech-nology, 84, pp.5–37.
Chang, K.L., Thitikorn-amorn, J., Hsieh, J.F., Ou, B.M., Chen, S.H., Ratanakhanokchai, K., Huang, P.J., Chen, S.T., 2011. Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 35, pp.90–95.
Chen, W.H., Tu, Y.J., Sheen, H.K., 2010. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research, 34, pp. 265–274.
Chen, W.H., Tu, Y.J., Sheen, H.K., 2011. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88, pp. 2726–2734.
Chen, W.H., Ye, S.C., Sheen, H.K., 2012. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 93, pp. 237–244.
Cheng, J., Su, H., Zhou, J., Song, W., Cen, K., 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36, pp. 2093–2101.
Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., Cherchi, F., 2012. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 46, pp.25–35.
Cosgrove, D.J., 1998. Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology. In L. Taiz and E. Zeiger, eds. Sunderland: Sinauer Associates Inc.
Dashtban, M., Schraft, H., Qin, W., 2010. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences, 5, pp.578–595.
Demirbas, A., 2011. Competitive liquid biofuels from biomass. Applied Energy, 88, pp.17–28.
Euliss, K., Ho, C.H., Schwab, A.P., Rock, S., Banks, M.K., 2008. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technology, 99, pp. 1961–1971.
Gabhane, J., Prince William, S.P.M., Vaidya, A.N., Mahapatra, K., Chakrabarti, T., 2011. Influence of heating source on the efficacy of lignocellulosic pretreatment – A cellulosic ethanol perspective. Biomass and Bioenergy, 35, pp. 96–102.
Gamez, J.A., Ramirez, J.A., Garrote, G., Vazquez, M., 2007. Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure. J Agric Food Chem, 52, pp.4172–4177.
Guo, F., Fang, Z., Xu, C.C., Jr, S.R.L, 2012. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, pp. 672–690.
Gupta, R., Khasa,Y.P., Kuhad, R.C., 2011. Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84, pp. 1103–1109.
Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M., Ardjmand, M., 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, pp. 77–93.
Harun, M.Y., Dayang Radiah, A.B., Zainal Abidin, Z., Yunus, R., 2011. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource Technology, 102, pp. 5193–5199.
Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, pp.10–18.
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., Sawayama, S., 2009. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, pp. 2706–2711.
Hirayma, C., Ihara, H., and Nagaoka, S. A., 1993. Characterization of perfluoroalkyl polymer ppherical particles for high performance liquid chromatography. Journal Applied Polymer Science, 52, pp.1736–1740.
Hsu, T.C., Guo, G.L., Chen, W.H., Hwang, W.S., 2010. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101, pp. 4907–4913.
Huang, X.D., El-Alawi, Y., Gurska, J., Glick, B.R., Greenberg, B.M., 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), pp. 139–147.
Ju, Y.H., Huynh, L.H., Kasim, N.S., Guo, T.J., Wang, J.,H., Fazary, A.E., 2011. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydrate Polymers, 83, pp. 591–599.
Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J, Schols, H.A., 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 98, pp.2034–2042.
Khiyami, M.A., Pometto, I.I.I., Brown, R.C., 2005. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. Journal of Agricultural and Food Chemistry, 53, pp.2978–2987.
Kim, H., Choi, B., 2010. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine. Renewable Energy, 35, pp. 157–163.
Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, pp.3713–3729.
Lau, M.W., Dale, B.E., 2008. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). PNAS, 106, pp.1368–1373.
Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M., 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156, pp. 395–403.
Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S., 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101, pp. 4900–4906.
Li, X., Kim, T.H., Nghiem, P., 2010. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technology, 101, pp.5910–5916.
Linoj Ku Mar, N.V., Dhavala, P., Goswa Mi, A., Maithel, S., 2006. Liquid biofuels in Asis:resources and technologies. Asian Biotechnol Develop Rew, 8, pp.31– 49
Limayem, A., Ricke, S.C., 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, pp. 449–467.
Liu, L., Sun, J., Li, M., Wang, S., Pei, H., Zhang, J., 2009. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresource Technology, 100, pp. 5853–5858.
Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A.T., Prausnitz, J.M., 2013. Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology 135, pp. 23–29.
Lloyd, T.A., Wyman, C.E., 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol, 96, pp.1967–1977.
Ma, H., Liu, W.W., Chen, X., Wu, Y.J., Yu, Z.L., 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100, pp. 1279–1284.
Maqbool, F., Wang, Z., Xuc,Y., Zhao, J., Gao, D., Zhao, Y.G. Bhatti, Z.A., Xing, B., 2012. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, pp. 237– 238, 262– 269.
McMillan, J.D., 1994. Pretreatment of lignocellulosic biomass. In: Himmel, M.E., Baker, J.O., Overend, R.P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, pp. 292–324.
Michalet, S., Rohr, J., Warshan, D., Bardon, C., Roggy, J.C., Domenach, A.M., Czarnes, S., Pommier, T., Combourieu, B., Guillaumaud, N., Bellvert, F., Comte, G., Poly, F., 2013. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 72, pp. 169-177.
Mishima, D., Kuniki, M., Sei, K., Soda, S., Ikem, M., Fujita, M., 2008. Ethanol production from candidate energy crop:Water hyacinth and Water lettuce. Bioresource Technology, 99, pp. 2495–2500.
Mohan, D., Pittman, C.U., Steele, P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy&Fuels, 20, pp. 848–889.
Monavari, S., Galbe, M., Zacchi, G., 2009. Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresource Technology, 100, pp.6312–6316.
Moretti, M.M.d.S, Bocchini-Martins, D.A., Nunes, C.d.C.C, Villena, M.A., Perrone, O.M., Silva, R.d., Boscolo, M., Gomes, E., 2014. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Applied Energy, 122, pp. 189–195.
Mulinari, D.R., Voorwald, H.J.C., Cioffi, M.O.H., Silva, M.L.C.P.d., Cruz, T.G.d., Saron, C., 2009. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology 69, pp. 214–219.
Pang, F., Xue, S., Yu, S., Zhang, C., Li, B., Kang, Y., 2013. Effects of combination of steam explosion and microwave irradiation (SE–MI) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover. Industrial Crops and Products, 42, pp. 402–408.
Ramimoghadam, D., Bagheri, S., Hamid, S.B.A., 2014. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 368, pp. 207–229.
Ruppert, L., Lin, Z.Q., Dixon, R.P., Johnson, K.A., 2013. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant–soil system. Journal of Hazardous Materials, 262, pp. 1230– 1236.
RFA, 2010. Ethanol industry outlook: climate of opportunity, http://www.ethanolrfa.org/page/-/objects/pdf/outlook/RFAoutlook2010_fin.pdf?nocdn=1
Sasmal, S., Goud, V.V., Mohanty, K., 2012. Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass and Bioenergy, 45, pp. 212–220.
Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N., 2009. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33, pp.88–96.
Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, A.K., 2008. Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24, pp.667–673.
Soleimani, M.S., Afyuni, M., Hajabbasi, M.A., Nourbakhsh, F., Sabzalian, M.R., Christensen, J.H., 2010. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81, pp. 1084–1090.
Tan, Y., Tang, J., Deng, A., Wu, Q., Zhang, T., Li, H., 2013. Magnetic properties and microwave absorption properties of chlorosulfonated polyethylene matrices containing graphite and carbonyl-iron powder. Journal of Magnetism and Magnetic Materials, 326, pp. 41–44.
Thostenson, E.T., Chou, T.W., 1999. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing 30, pp.1055 – 1071
Turner, P., Mamo, G., Karlsson, E.N., 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories, 6, pp. 1–23.
Viesturs, U., Zarina, D,. Strikauska, S. Berzins, A., 2004. Utilisation of food and woodworking production byproducts by composting. Bioautomation, 1, pp. 83–98.
U.S.EPA, 2000. Introduction to Phytoremediation. EPA/600/R-99/107.
U.S. Department of Energy Biomass Program, 2009.
U.S.EPA, 2012. A Citizen's Guide to Phytoremediation. EPA/542-F-12-006.
Wang, X.J., Li, H.Q., Cao, Y., Tang, Q., 2011. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol, 102, pp. 7959–7965.
Williams, K.C., 2006. Subcritical water and chemical pretreatments of cotton stalk for the production of ethanol. USA, North Carolina State University, Raleigh, NC, Master's thesis.
Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, pp.1959–1966.
Xia, A., Cheng, J., Song, W., Yu, C., Zhou, J., Cen, K., 2013. Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61, pp. 158–166.
Yusuf, A.A., Abdu, N., Tanimu, B., 2011. Assessment of lead contamination of farmlands in Abare village, Zamfara State.
Zhong, C., Lau, M.W., Balan, V., Dale, B.E., Yuan, Y.J., 2009. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX–treated rice straw. Applied Biochemistry and Biotechnology, 84, pp.667–676.
林福文,2008,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期。
林祐生、李文乾,2009,「生質酒精」,科學發展期刊,第 433 期。
朱祐陞,2014,「堆肥添加對植物復育整治柴油污染土壤效果之研究」,國立中山大學海洋環境及工程學系,碩士論文。
吳耿東,2008 「認識生質能源」,物理雙月刊,第30卷,第4期,頁377-386。
吳志勇,2012,「羰基鐵粉之吸波特性研究」,國防大學理工學院應用化學及材料科學系,碩士論文。
凃伊建,2010,「生質酒精生產中稀硫酸前處理對蔗渣結構之影響」,國立台南大學綠色能源科技學系,碩士論文。
陳維新,2008,「生質物與生質能」,高立圖書有限公司。
陳芃,2008a,「二代生質酒精上路-以纖維素酒精產製生質燃料」,能源報導,頁12-14。
陳芃,2008b,「從能源統計看減碳與能源政策」,能源話題-能源報導,頁23-25。
陳上權,2012,「以實驗設計法探討酸性水解布袋蓮纖維素之產醣率及釋出有機物之性質」,大仁科技大學環境管理研究所,碩士論文。
陳志恩,2013,「利用廢棄物質為催化劑製作生質柴油之研究」,國立中山大學環境工程研究所,碩士論文。
孫世昌,2008,「引爆糧食供應失衡?歐盟擬規範生質能源發展」,生技與醫療器材報導,第7期,頁11-13。
黃文滉,2014,「生質能源技術重大突破綠色能源明日之星」,台肥季刊,第54卷,第4期。
黃佳慧,2012,「評估本土生質酒精料源之成本效益」,台灣經濟研究月刊,第35卷 第12期。
張德、牟季美,2001,「奈米材料和奈米結構」,科學出版社,頁23-25。
張超海,2012,「綠色能源:第二代生質酒精的發展評估」,長庚大學管理學院經營管理組,碩士論文。
劉順華、劉軍民、董星龍,2006,「電磁波屏蔽及吸波材料」,化學工業出版社,頁211-217。
鄭豐裕,2006,「四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用」,國立成功大學化學研究所,博士論文。
趙金賢,2010,「結合纖維素分解菌與固定化產醇菌之共培養系統以提升乙醇產量之研究」,大葉大學環境工程學系,碩士論文。
蔡文慶,2010,「生質酒精的生產與發展現況」,朝陽科技大學應用化學系,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code