Responsive image
博碩士論文 etd-0729116-014200 詳細資訊
Title page for etd-0729116-014200
論文名稱
Title
光纖雙向收發元件之材料熱傳導係數變異對散熱效果之影響
The Effects of Variations of Material’s Thermal Conductivity Coefficient on Heat Dissipation of Optical Fiber Transceiver Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-08
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
光纖雙向收發元件、有限體積法、散熱性、熱傳導係數、設計規範
optical fiber transceiver device, heat dissipation, finite volume method, design rule, thermal conductivity coefficient
統計
Statistics
本論文已被瀏覽 5674 次,被下載 1100
The thesis/dissertation has been browsed 5674 times, has been downloaded 1100 times.
中文摘要
隨著攜帶型電子消費產品的普及,對於使用網路的用戶以及數據流量皆有爆炸性的成長,其中光纖雙向收發元件在光纖網路骨幹中扮演資料傳輸的重要角色,而元件中雷射的溫度會影響其產品壽命、通訊品質與訊號傳輸效率等。
由於光纖雙向收發元件其部分零件具有多種材料選擇的特性,因此本研究主要目的在於利用ANSYS 15.0/Fluent有限體積法軟體建立三維之光纖雙向收發元件,用以探討不同材料之熱傳導係數對於元件散熱性之影響,而元件散熱性之優劣在本研究中又可分為雷射最高溫度之高低與雷射出入光口溫度差之大小兩部分做探討。
在電路基板、外殼、鍍膜層、雷射基板與錫球此五種材料選擇中,本研究模擬結果發現以電路基板與雷射基板熱傳導係數之改變對於元件散熱性有較為明顯之影響,是以稱之為元件散熱性之重要因子,模擬結果分別得到重要因子與雷射最高溫度以及雷射出入光口溫度差之擬合方程式,再將不同雷射功率之影響效應考慮進此擬合模型中,成功建立出一個考慮不同雷射功率之情況下,重要因子熱傳導係數對於元件散熱性之設計規範,將擬合模型代入十一組模擬驗證數據中,雷射最高溫度以及雷射出入光口溫度差之誤差皆小於9%。透過擬合方程式得知,在210mW的雷射散熱功率情況下,電路基板與雷射基板之熱傳導係數分別選擇大於2W/m℃以及60W/m℃之材料,雷射最高溫度以及雷射出入光口溫度差可以分別低於85℃以及12℃。
Abstract
As portable electronic devices have become widely used, both the demand for internet access and network traffic have increased hugely. The Optical Fiber Transceiver Device is important for communication through optical fiber networks. The temperature of the device affects its lifetime, the quality of communication and the coupling efficiency of the optical fiber.
Since some of the components of the Optical Fiber Transceiver Device can be made of various materials, this work constructs a three–dimensional Optical Fiber Transceiver Device model using the ANSYS 15.0/Fluent software for implementing the finite volume method, and to investigate the effects of the thermal conductivity coefficient of the materials on heat dissipation by the device.
Among five components which have alternative materials — substrate, housing, coating, SMT substrate and solder ball –– the results revealed the dissipation of heat by the device was dominated by the variations of substrate and SMT substrate’s thermal conductivity coefficient. These critical variables were fitted using equations in terms of the maximum temperature of device and the difference between the inlet and outlet temperatures of the laser coupling. The effect of the laser power on the fitting model was considered. Then, the design rule corresponding to the critical components’ thermal conductivity coefficient of the Optical Fiber Transceiver Device was obtained successfully. The errors between the simulated and the fitted results which were concluding the maximum temperature of device and the difference between the inlet and outlet temperatures of the laser coupling were less than 9%. At a heat dissipation by the laser of 210mW, when the thermal conductivity coefficients of the substrate and the SMT substrate’s material were 2W/m℃ and 60W/m℃, the maximum temperature of the device and the difference between the inlet and outlet temperatures were less than 85℃ and 12℃, respectively.
目次 Table of Contents
目錄
誌 謝 i
摘 要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 光纖雙向收發元件簡介 2
1.3 文獻回顧 5
1.3.1 溫度對於半導體雷射之可靠度影響 5
1.3.2 光纖雙向收發元件內部雷射零件之散熱問題 8
1.4 研究動機與目的 9
1.5 全文架構 10
第二章 基礎理論簡介 13
2.1 有限體積法簡介 13
2.2 套裝軟體ANSYS15.0/Fluent簡介 14
2.3 基礎熱傳原理 17
2.3.1 熱傳導 17
2.3.2 熱對流 18
2.3.3 熱輻射 19
2.4 Design Expert 8.0軟體介紹 20
第三章 研究方法 29
3.1 研究流程 29
3.2 基本假設 31
3.3 模型之建立與模擬設定 31
3.3.1 模型結構與尺寸 31
3.3.2 模型材料參數選擇 32
3.3.3 模型網格劃分 33
3.3.4 邊界條件與負載設定 34
3.3.5 收斂性分析 35
第四章 結果與討論 49
4.1 影響元件散熱性之重要因子 49
4.1.1 第一階段實驗設計 49
4.1.2 第二階段實驗設計 52
4.2 重要因子與雷射最高溫度之關係 56
4.3重要因子與雷射出入光口溫度差之關係 58
4.4功率變化對於元件散熱性之影響 60
第五章 結論與未來展望 93
5.1 結論 93
5.2 未來展望 94
參考文獻 95
附錄A 101
附錄B 103
參考文獻 References
[1] 李銘淵,光纖通信概論(修訂版),金華科技圖書股份有限公司,台北,台灣,2009。
[2] T. H. Maiman,“Stimulated optical radiation in ruby,”Nature, vol. 187, pp. 494, 1960.
[3] K. C. Kao and G. A. Hockham,“Dielectric-fibre surface waveguides for optical frequencies,” in Proceedings of the Institution of Electrical Engineers, pp. 1151-1158, 1966.
[4] 陳瑞鑫、陳鴻仁、林依恩,光通訊原理與技術,金華科技圖書股份有限公司,台北,台灣,2004。
[5] T. Higashi, T. Yamamoto, and S. Ogita, “Temperature sensitivity of oscillation wavelength in 1.3μm-GaInAsP/InP quantum-well semiconductor lasers,” in Lasers and Electro-Optics Society Annual Meeting, pp. 10-11, 1996.
[6] T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental analysis of temperature dependence of oscillation wavelength in quantum-well FP semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 34, pp. 1680-1689, 1998.
[7] M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technology Letters, vol. 12, pp. 777-779, 2000.
[8] J. Muszalski, J. Houlihan, G. Huyet, and B. Corbett, “Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1310 nm,” Electronics Letters, vol. 40, pp. 428-430, 2004.
[9] C. Born, M. Sorel, and Y. Siyuan, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE Journal of Quantum Electronics, vol. 41, pp. 261-271, 2005.
[10] D. Chen, H. Ou, H. Fu, S. Qin, and S. Gao, “Wavelength-spacing tunable multi-wavelength erbium-doped fiber laser incorporating a semiconductor optical amplifier,” Laser Physics Letters, vol. 4, pp. 287, 2007.
[11] K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota, “Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm,” Applied Physics Letters, vol. 94, pp. 071105, 2009.
[12] Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, et al., “Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift,” Optics Letters, vol. 37, pp. 3315-3317, 2012.
[13] S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, et al., “Reliability of GaAs-based semiconductor diode lasers: 0.6-1.1μm,” IEEE Journal of Quantum Electronics, vol. 29, pp. 2058-2067, 1993.
[14] L. Xingsheng, M. H. Hu, N. Hong Ky, C. G. Caneau, M. H. Rasmussen, R. W. Davis, et al., “Comparison between epi-down and epi-up bonded high-power single-mode 980-nm semiconductor lasers,” IEEE Transactions on Advanced Packaging, vol. 27, pp. 640-646, 2004.
[15] H. Jae-Ho and P. Sung-Woong, “Wafer level reliability and lifetime analysis of InGaAsP/InP quantum-well Fabry-Perot laser diode,” IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 683-687, 2005.
[16] M. Fukuda, F. Kano, T. Kurosaki, and J. Yoshida, “Reliability and degradation behavior of highly coherent 1.55μm long-cavity multiple quantum well (MQW) DFB lasers,” Journal of Lightwave Technology, vol. 10, pp. 1097-1104, 1992.
[17] H. Jae-Ho and S. W. Park, “Theoretical and experimental study on junction temperature of packaged Fabry-Perot laser diode,” IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 292-294, 2004.
[18] S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, “Dislocation related issues in the degradation of GaN-based laser diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 1277-1286, 2004.
[19] J. E. Cunningham, D. K. McElfresh, L. D. Lopez, D. Vacar, and A. V. Krishnamoorthy, “Scaling vertical-cavity surface-emitting laser reliability for petascale systems,” Applied Optics, vol. 45, pp. 6342-6348, 2006.
[20] X. Liu, R. W. Davis, L. C. Hughes, M. H. Rasmussen, R. Bhat, C.-E. Zah, et al., “A study on the reliability of indium solder die bonding of high power semiconductor lasers,” Journal of Applied Physics, vol. 100, pp. 013104, 2006.
[21] K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectronics Reliability, vol. 49, pp. 42-50, 2009.
[22] R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Applied Optics, vol. 21, pp. 2671-2688, 1982.
[23] R. W. Gilsdorf and J. C. Palais, “Single-mode fiber coupling efficiency with graded-index rod lenses,” Applied Optics, vol. 33, pp. 3440-3445, 1994.
[24] R. Puchert, A. Barwolff, M. Voss, U. Menzel, J. W. Tomm, and J. Luft, “Transient thermal behavior of high power diode laser arrays,” IEEE Transactions on Components and Packaging Technologies, vol. 23, pp. 95-100, 2000.
[25] M. Leers and K. Boucke, “Cooling approaches for high power diode laser bars,” in 2008 58th Electronic Components and Technology Conference, pp. 1011-1016, 2008.
[26] E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bulletin, vol. 37, pp. 1273-1281, 2012.
[27] P. Zhang, N. Wang, C. Zand, L. Ye, Y. Fu, et al., “Thermal characterization of power devices using graphene-based film,” in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 459-463, 2014.
[28] “thefoa, ” http://www.thefoa.org/tech/ref/appln/transceiver.html, 2016/06/12.
[29] “pida, ” http://www.pida.org.tw/report/2001/07-PDF/ch4ok.PDF, 2016/06/13.
[30] “eluxi, ” http://www.eluxi.co.uk, 2016/06/13.
[31] H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition), Prentice Hall, USA, 2007.
[32] C. Su,品質工程:線外方法與應用,前程文化事業有限公司,新北,台灣,2013。
[33] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer, Cengage Learning, USA, 2011.
[34] Z. Lin, A. McNamara, Y. Liu, K.-s. Moon, and C.-P. Wong, “Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation,” Composites Science and Technology, vol. 90, pp. 123-128, 2014.
[35] “ciscodatasheet,” http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-660083.html, 2016/06/27.
[36] L. Gordon and L. Jack, “The introduction of high heat dissipation material,” in 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference, pp. 240-243, 2009.
[37] “engineersedge, ” http://www.engineersedge.com/properties_of_metals.htm, 2016/06/25.
[38] J. Bilek, J. K. Atkinson, and W. A. Wakeham, “Thermal Conductivity of Molten Lead-Free Solders,” International Journal of Thermophysics, vol. 27, pp. 92-102, 2006.
[39] A. Shakouri, C. Labounty, P. Abraham, J. Piprek, and J. E. Bowers, “InP-based thermionic coolers,” in Indium Phosphide and Related Materials, 1999. IPRM. 1999 Eleventh International Conference , pp. 463-465, 1999.
[40] I. C. Kizilyalli, H. Safar, J. Herbsommer, S. J. Burden, and P. L. Gammel, “Power transistors fabricated using isotopically purified silicon (28Si),” IEEE Electron Device Letters, vol. 26, pp. 404-406, 2005.
[41] “kson,” http://www.kson.com.tw/chinese/study_15-18.htm, 2016/06/26.
[42] “icprotect, ” http://www.icprotect.com.tw/articles-9.html, 2016/06/26.
[43] Y. Nishimura, K. Oonishi, A. Morozumi, E. Mochizuki, and Y. Takahashi, “All lead free IGBT module with excellent reliability,” in Proceedings The 17th International Symposium on Power Semiconductor Devices and ICs, pp. 79-82, 2005.
[44] “cmclaboratories, ” http://www.cmclaboratories.com/documents/ cmc_low_cost_aln_power_semiconductors.pdf, 2016.
[45] “steelss,” http://www.steelss.com/Stainless-Steel/jis-sus-304.html, 2016.
[46] “techget,” http://tech.get.com.tw/tech/tech-14-1.htm, 2016.
[47] E. H. Weber, M. L. Clingerman, and J. A. King, “Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling,” Journal of Applied Polymer Science, vol. 88, pp. 123-130, 2003.
[48] J.-C. Zheng, L. Zhang, A. V. Kretinin, S. V. Morozov, Y. B. Wang, T. Wang, et al., “High thermal conductivity of hexagonal boron nitride laminates,” 2D Materials, vol. 3, 2016.
[49] E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, “Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride,” Physical Review B, vol. 13, pp. 4607-4611, 1976.
[50] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Physical Review B, vol. 59, pp. R2514-R2516, 1999.
[51] P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, “Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity,” Composites Science and Technology, vol. 66, pp. 2677-2685, 2006.
[52] Z. Tan, Z. Li, G. Fan, Q. Guo, X. Kai, G. Ji, et al., “Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer,” Materials & Design, vol. 47, pp. 160-166, 2013.
[53] P. Misse, D. Berthebaud, O. Lebedev, A. Maignan, and E. Guilmeau, “Synthesis and Thermoelectric Properties in the 2D Ti1 – xNbxS3 Trichalcogenides,” Materials, vol. 8, pp. 2514, 2015.
[54] J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics, Artech House, Norwood, Massachusetts, USA, 1988.
[55] “indiumdatasheet,” http://www.indium.com/technical-documents/product-data-sheets, 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code