Responsive image
博碩士論文 etd-0729116-103528 詳細資訊
Title page for etd-0729116-103528
論文名稱
Title
具環境敏感之奈米微胞粒子做為雙抗癌藥物之共載體
Synthesis and Characterization of Reduction-Responsive Block Copolymers for Anti-cancer Drugs Co-delivery System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-26
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
協同作用、微胞、自組裝、藥物傳遞、雙硫鍵
disulfide linkage, drug delivery, synergistic effect, micelle, self-assembly
統計
Statistics
本論文已被瀏覽 5705 次,被下載 173
The thesis/dissertation has been browsed 5705 times, has been downloaded 173 times.
中文摘要
利用開環聚合(ROP)及原子轉移自由基聚合(ATRP)合成具有雙硫鍵的新穎兩性鏈狀共聚物 poly(methacrylic acid)-b-poly(ε-caprolactone) block copolymers
with a disulfide linkage (PCL-SS-PMAA)。此共聚物在水中可自組裝形成微胞(PSPm),疏水層為 PCL,親水層為 PMAA,疏水與親水層中間含有雙硫鍵,我們利用 MAA 上的羧基(carboxyl groups) 與抗癌藥物 cisplatin (CDDP)螯合,並利用疏水層的疏水作用力包覆疏水性抗癌藥物 paclitaxel (PTX),形成雙抗癌藥物的載體(PSPm(PTX/CDDP))。
我們利用 1H-NMR 和 FT-IR 分析共聚物的結構,利用螢光光譜儀測量臨界微胞濃度 Critical micelle concentration (CMC),PSPm擁有低的臨界微胞濃度,約
為 2˟10-3mg/mL,這使 PSPm 在血液循環中可以較穩定的存在。並以動態光散射分析儀(Dynamic light scattering, DLS) 以及穿透式電子顯微鏡 (Transmission
electron microscope, TEM)分析 PSPm的粒徑大小及型態,PSPm大小約為210-270nm。藉由 TEM的觀察,發現還原劑 Dithiothreitol (DTT)的作用前後,PSPm之外觀明顯不同,說明雙硫鍵可被還原,使 PSPm結構瓦解。而後將微胞表面的羧基螯合上親水性抗癌藥物 CDDP、並將疏水性抗癌藥物 PTX 包覆在 PSPm內,並利用 UV 光譜儀及 HPLC 測量其藥物包覆率及釋放比例。更進一步,我們利用人類非小細胞肺癌(H-520) 進行細胞實驗,驗證 PSPm(PTX/CDDP)其毒殺效果及協同作用。
Abstract
Self-assembled poly(methacrylic acid)-b-poly(ε-caprolactone) block copolymers
with a disulfide linkage in between, PCL-SS-PMAA, were synthesized for enhanced
drug co-delivery systems. The block copolymers, PCL-SS-PMAA were synthesized
via the combination of ring opening polymerization (ROP), atom transfer radical
polymerization (ATRP), followed by hydrolysis. Structures of block copolymers were
confirmed by 1H-NMR and FT-IR. The PCL-SS-PMAA copolymers could
self-assemble into core-shell micelles (PSPm) in an aqueous solution with
hydrophobic PCL segment in the center to encapsulate paclitaxel (PTX) and
hydrophilic PMAA segment on the surface to chelate cisplatin (CDDP) as well as to
perform a pH-responsive character. The critical micelle concentration (CMC) values
of PSPm were around 2*(10)^-3 mg/mL, indicating PSPm will be stable in body
circulation. Particle sizes of PSPm were within 210-270 nm, which determined by
TEM and DLS. We clearly observed the change in morphology after PSPm was
treated with DTT (Dithiothreitol), indicating the reduction of disulfide linkages. In
addition, the LE (Loading Efficiency), EE (Encapsulate Efficiency) and accumulated
release of PTX and CDDP loaded with PSPm were determined by high performance
liquid chromatography (HPLC) and an UV-visible spectrometer, respectively, and
both of them had high LE and EE. In this design, PTX could be released efficiently
when disulfide linkages were cleaved. Cytotoxicities of the drug-loaded PSPm were
done against H-520 lung cancer cells. The results demonstrated that the co-delivery of
CDDP and PTX using PSPm as a carrier has a synergistic effect in killing tumor cells
for future lung cancer therapy.
目次 Table of Contents
目錄
中文摘要 ii
英文摘要 iii
第一章 緒論
1-1前言P.1
1-2研究目的與動機P.2
第二章 文獻回顧
2-1藥物載體P.4
2-2微胞P. 5
2-3藥物傳遞及控制釋放P.6
2-4奈米藥物載體的分布性P.8
2-5材料介紹P.10
2-5-1 Poly-ε-caprolactone (PCL)P.10
2-5-2 Poly(methacrylic acid)(PMAA) P.10
2-5-3 Cisplatin (CDDP)P.11
2-5-4 Paclitaxel (PTX)P.12
2-6協同作用(Synergistic effect) P. 13
2-7原子轉移自由基聚合 (Atom transfer radical polymerization, ATRP)
P.15
第三章 材料製備與實驗方法
3-1實驗試劑P.16
3-2實驗儀器P.18
3-3載體製備P.20
3-3-1合成2-Bromo-2-methyl-propionic acid
2-(2-hydroxy-ethyldisulfanyl)-ethyl ester (OH-SS-Br) P.20
3-3-2合成poly(ε-caprolactone) -b-bromide with a disulfide linkage
(PCL-SS-Br) P.21
3-3-3合成poly(tert-Butyl methacrylate)-b-poly(ε-caprolactone) with a
disulfide linkage (PCL-SS-PtBMA) P.22
3-3-4合成poly(methacrylic acid)-b-poly(ε-caprolactone) with a disulfide
linkage (PCL-SS-PMAA) P.23
3-3-5合成poly(methacrylic acid)-b-poly(ε-caprolactone)-Rhodamine
123 with disulfide linkage (PCL-SS-PMAA-R123) P.24
3-4材料之分析方法 P.25
3-4-1核磁共振光譜儀 (1H-NMR)的測定 P.25
3-4-2氣相層析質譜儀(Gas Chromatography-Mass, GC-MS)之分子
量分析 P.25
3-4-3 膠體滲透層析儀(Gel Permeation Chromatography, GPC)之分子
量分析 P.25
3-4-4傅立葉轉換紅外光光譜儀 (Fourier Transform Infrared
Spectroscopy ,FTIR)之結構分析 P.25
3-5微胞 (micelle)的製備與分析 P.26
3-5-1 臨界微胞濃度 (Critical micelle concentration, CMC) P.26
3-5-2 微胞的製備 P.27
3-5-3 粒徑大小與介面電位的測定 (Particle Size and Zeta Potential) P.27
3-5-4 穿透式電子顯微鏡 (Transmission electron microscopy, TEM)觀
察微胞顆粒 P.27
3-6藥物包覆及釋放 P.28
3-6-1微胞與藥物結合 P.28
3-6-1-1 利用HPLC 製作PTX檢量線 P.28
3-6-1-2 微胞包覆PTX P.28
3-6-1-3 藥物PTX乘載率測定 P.28
3-6-1-4 o-Phenylenediamine (OPDA) 紫外-可見光檢測線 P.29
3-6-1-5 微胞螯合CDDP P.29
3-6-1-6藥物CDDP乘載率測定 P.29
3-6-1-7微胞同時搭載CDDP及PTX P.29
3-6-2藥物制放
3-6-2-1 利用HPLC 製作PTX檢量線 P.30
3-6-2-2 PTX藥物制放 P.30
3-6-2-3 o-Phenylenediamine (OPDA) 紫外-可見光檢測線 P.30
3-6-2-4 CDDP藥物制放 P.31
3-7載體之體外(In Vitro)試驗 P.32
3-7-1細胞培養(Cell Culture) P.32
3-7-2細胞毒性測試(Cell Viability Assay)
3-7-2-1 PCL-SS-PMAA微胞(PSPm)之細胞毒性測試(Cell
Viability Assay) P. 32
3-7-2-2 載藥微胞(PSPm(PTX))、(PSPm(CDDP))、
(PSPm(PTX/CDDP))之細胞毒性測試(Cell Viability
Assay) P.33
3-7-2-3 PTX之細胞毒性測試(Cell Viability Assay) P.33
3-7-3流式細胞儀 (Flow cytometer) P.34
3-7-4共軛聚焦顯微鏡(CLSM)觀察細胞內的傳遞 P.35

第四章 結果與討論
4-1材料製備及分析 P.36
4-1-1 OH-SS-Br、PCL-SS-Br、PCL-SS-PtBMA、PCL-SS-PMAA的合
成及鑑定 P.36
4-1-2 PCL-SS-PtBMA鑑定 P.39
4-1-3 PCL-SS-PMAA鑑定 P.42
4-2臨界微胞濃度分析 P.44
4-3微胞粒徑大小與型態 P.46
4-4藥物搭載與釋放 P.51
4-4-1藥物乘載率 P 53
4-4-2載藥微胞分析鑑定 P.55
4-4-3藥物釋放 P.57
4-5體外(In Vitro)細胞毒性測試 P. 60
4-5-1微胞PSPm細胞毒性 P. 60
4-5-2 PTX細胞毒性測試 P.62
4-5-3載藥微胞細胞毒性測試
(The half maximal inhibitory concentration, IC50) P.63
4-5-4. PSPm(PTX/CDDP)系列與Free PTX+CDDP的細胞凋亡分
析 P.67
4-5-5流式細胞儀 P.69
4-5-6共軛聚焦顯微鏡觀察細胞內的傳遞 P.69
第五章 結論 P.71
參考文獻 P.72

圖次
圖2-1 (A)常見的奈米藥物載體種類;(B)有修飾PEG及配體的奈米粒子 P.4
圖2-2表面張力與臨界微胞濃度 P. 5
圖2-3 (A)藥物濃度於傳統治療與時間調控制釋放治療的變化與(B)藥物制放系統
於一理想濃度分布 P. 7
圖2-4高分子在體內的分布情形 P. 9
圖2-5 (A)正常組織周圍血管之排列方式(B)腫瘤組織周圍血管之排列方式 P. 9
圖2-6 PCL結構圖 P. 10
圖2-7 PMAA結構圖 P. 10
圖2-8 CDDP導致細胞凋亡之機制 P. 11
圖2-9 PTX導致細胞凋亡之機制 P. 12
圖2-10 (A)微胞搭載PTX及CDDP之示意圖(B)CDDP及PTX進入細胞後使細胞
凋亡之示意圖 P. 14
圖2-10 ATRP反應機制示意圖 P. 15
圖3-1 OH-SS-Br合成示意圖 P. 20
圖3-2 PCL-SS-Br合成示意圖 P. 21
圖3-3 PCL-SS- PtBMA合成示意圖 P. 22
圖3-4 PCL-SS- PMAA合成示意圖 P. 23
圖3-5 PCL-SS-PMAA自組裝形成微胞 P. 26
圖4-1 OH-SS-Br的1H-NMR光譜圖 P. 37
圖4-2 OH-SS-Br的GC-Mass圖譜 P. 37
圖4-3 (A)PCL-SS-Br、(B)PCL-SS-PtBMA、(C)PCL-SS-PMAA 的1H-NMR光譜
圖 P. 39
圖4-4 PCL-SS-PtBMA的GPC圖譜 P. 40
圖4-5時間與分子量增加關係圖 P. 40
圖4-6 PCL-SS-PMAA的1H-NMR光譜圖 P. 42
圖4-7 PCL20-SS-PtBMA70及PCL20-SS-PMAA70的FTIR圖譜 P. 43
圖4-8 PCL-SS-PMAA在pH 7.4及pH 5.5的臨界微胞濃度 P. 44
圖4-9由TEM觀察pH 7.4中,(A, B) PSPm在50mM DTT作用前與(C, D) DTT
作用24小時後之外觀型態 P. 48
圖4-10 PSPm於pH 7.4 PBS中0、3、6、9、12、24 小時50mM DTT 作用的DLS
粒徑分布圖 P. 48
圖4-11由TEM觀察 在pH 5.5中(A, B) PSPm在50mM DTT作用前與(C,
D)DTT作用24小時後之外觀型態 P. 49
圖4-12 PSPm於pH 5.5 PBS中0、3、6、9、12、24 小時50mM DTT 作用的DLS
粒徑分布圖 P. 49
圖4-13. PSPm包覆疏水性抗癌藥物PTX示意圖 P.51
圖4-14. PSPm螯合親水性抗癌藥物CDDP示意圖 P.51
圖4-15. PSPm螯合親水性抗癌藥物CDDP示意圖 P.52
圖4-16. PSPm同時包覆PTX及螯合CDDP之示意圖 P.52
圖4-17. PSPm(PTX)、PSPm(CDDP)及PSPm(PTX/CDDP)的DLS粒徑分布圖P.56
圖4-18由穿透式電子顯微鏡觀察(TEM) 觀察PSPm(PTX)在水相環境中於不同倍
率下(A,B)的形貌 P.56
圖4-19由穿透式電子顯微鏡觀察(TEM) 觀察PSPm(CDDP)在水相環境中
於不同倍率下(A,B)的形貌 P.56
圖4-20由穿透式電子顯微鏡觀察(TEM) 觀察PSPm(PTX/CDDP)在水相環境中
於不同倍率下(A,B)的形貌 P.57
圖4-21利用HPLC測量PTX從PSPm(PTX/CDDP)在不同pH值及有無50mM DTT作用隨時間變化的藥物釋放情形(n=3) P.58
圖4-22 (A)利用UV分光光譜儀測量CDDP從PSPm(PTX/CDDP)在不同pH值中隨時間變化的藥物釋放情形(n=3);(B)利用UV分光光譜儀測量CDDP從PSPm(PTX/CDDP)在不同酸的種類調成相同pH值中隨時間變化的藥物釋放情形(n=3) P.59
圖4-23加入不同濃度的PSPm經(A) 24小時(B) 48小時(C) 72小時後對於CRL-5802、NCI-H520、NCI-358細胞株之細胞活性(n=8) P.61
圖4-24 Free PTX於三種非小細胞肺癌培養48小時後細胞毒性測試圖(n=8) P. 62
圖4-25 Free CDDP、Free PTX、Free CDDP+ Free PTX、PSPm(CDDP)、PSPm(PTX)、PSPm(CDDP) +PSPm(PTX)、PSPm(PTX/CDDP)於NCI-H520非小細胞肺癌細胞培養24小時之細胞毒性測試(n=8) P.65
圖4-26 Free CDDP、Free PTX、Free CDDP+ Free PTX、PSPm(CDDP)、PSPm(PTX)、PSPm(CDDP) +PSPm(PTX)、PSPm(PTX/CDDP)於NCI-H520非小細胞肺癌細胞培養48小時之細胞毒性測試(n=8, p<0.05) P.65
圖4-27 Free CDDP、Free PTX、Free CDDP+ Free PTX、PSPm(CDDP)、PSPm(PTX)、PSPm(CDDP) +PSPm(PTX)、PSPm(PTX/CDDP)於NCI-H520非小細胞肺癌細胞培養48小時之細胞毒性測試 (n=8, p<0.05) P.66
圖4-28 利用流式細胞儀觀察Free PTX+ Free CDDP、PSPm(PTX)+PSPm(CDDP)、
PSPm(PTX/CDDP)於NCI-H520非小細胞肺癌細胞培養72小時之細胞凋亡情形
(Free PTX:1.8μg/mL, Free CDDP:7.1μg/mL;PSPm(PTX)+PSPm(CDDP):
PTX:1.8μg/mL, CDDP:7.1μg/mL;PSPm(PTX/CDDP): PTX:1.8μg/mL,
CDDP:7.1μg/mL) P.68
圖4-29 利用FLOW觀察NCI-H520細胞於0.5小時及3小時對PSPm-R123的胞
噬分析 P.69
圖4-30 利用CLSM觀察NCI-H520細胞於0.5小時及3小時對PSPm-R123的胞
噬分析 P.70

表次
表4-1 利用1H-NMR及GPC鑑定PCL-SS-PtBMA之聚合程度 P. 41
表4-2 時間與水解程度關係圖 P. 42
表4-3 臨界微胞濃度 P. 45
表4-4 由DLS測定PSPm粒徑大小、粒徑分布及表面電荷 P. 46
表4-5 PSPm於pH 7.4 PBS中0、3、6、9、12、24 小時50mM DTT 作用DLS
粒徑分布變化 P. 50
表4-6 PSPm於pH 5.5 PBS中0、3、6、9、12、24 小時50mM DTT作用DLS
粒徑分布變化 P. 50
表4-7利用HPLC測量PSPm(PTX)的藥物搭載率(LE)及藥物包覆率(EE)和產
率 P.53
表4-8利用UV分光光譜儀測量PSPm螯合親水性藥物CDDP的藥物搭載率(LE)及藥物包覆率(EE)和產率 P.54
表4-9利用UV分光光譜儀測量PSPm(PTX)螯合親水性藥物CDDP的藥物搭載率(LE)及藥物包覆率(EE)和產率 P.54
表4-10由DLS測定PSPm(PTX)、PSPm(CDDP)及PSPm(PTX/CDDP)粒徑大小及粒徑分布 P.55
表4-11 Free CDDP、Free PTX、Free CDDP+ Free PTX、PSPm(CDDP)、PSPm(PTX)、PSPm(CDDP) +PSPm(PTX)、PSPm(PTX/CDDP)於NCI-H520培養之IC50值 P.64
表4-12 Free CDDP+ Free PTX、PSPm(CDDP) +PSPm(PTX)、PSPm(PTX/CDDP)於NCI-H520培養72小時之CI值 P.64
表4-13 利用流式細胞儀觀察Free PTX+ Free CDDP、
PSPm(PTX)+PSPm(CDDP)、PSPm(PTX/CDDP)於NCI-H520非小細胞肺
癌細胞培養72小時之細胞凋亡情形 P.68
參考文獻 References
1. Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007, 2 (12), 751-760.
2. Ardizzoni, A.; Boni, L.; Tiseo, M.; Fossella, F. V.; Schiller, J. H.; Paesmans, M.; Radosavljevic, D.; Paccagnella, A.; Zatloukal, P.; Mazzanti, P.; Bisset, D.; Rosell, R.; Group, C. M.-a., Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. Journal of the National Cancer Institute 2007, 99 (11), 847-57.
3. Cortes, J.; Rodriguez, J.; Aramendia, J. M.; Salgado, E.; Gurpide, A.; Garcia-Foncillas, J.; Aristu, J. J.; Claver, A.; Bosch, A.; Lopez-Picazo, J. M.; Martin-Algarra, S.; Brugarolas, A.; Calvo, E., Front-line paclitaxel/cisplatin-based chemotherapy in brain metastases from non-small-cell lung cancer. Oncology 2003, 64 (1), 28-35.
4. Danhier, F.; Feron, O.; Preat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010, 148 (2), 135-46.
5. Leo, E.; Scatturin, A.; Vighi, E.; Dalpiaz, A., Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight. J Nanosci Nanotechnol 2006, 6 (9-10), 3070-9.
6. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M., Polymeric systems for controlled drug release. Chem Rev 1999, 99 (11), 3181-98.
7. Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceut 2008, 5 (4), 505-515.
8. Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; vanderZee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J. M., Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275 (5302), 964-967.
9. Gu, S. Z.; Zhao, X. H.; Zhang, L. X.; Li, L.; Wang, Z. Y.; Meng, M.; An, G. L., Anti-angiogenesis effect of generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide on breast cancer in vitro. Journal of Zhejiang University. Science. B 2009, 10 (3), 159-67.
10. Nakamura, Y.; Mochida, A.; Choyke, P. L.; Kobayashi, H., Nano-drug delivery: Is the enhanced permeability and retention (EPR) effect sufficient for curing cancer? Bioconjugate chemistry 2016.
11. Shahin, M.; Ahmed, S.; Kaur, K.; Lavasanifar, A., Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel. Biomaterials 2011, 32 (22), 5123-33.
12. Dash, T. K.; Konkimalla, V. B., Polymeric Modification and Its Implication in Drug Delivery: Poly-epsilon-caprolactone (PCL) as a Model Polymer. Mol Pharmaceut 2012, 9 (9), 2365-2379.
13. Kelland, L. R.; Sharp, S. Y.; O'Neill, C. F.; Raynaud, F. I.; Beale, P. J.; Judson, I. R., Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem 1999, 77 (1-2), 111-5.
14. Ivanov, A. I.; Christodoulou, J.; Parkinson, J. A.; Barnham, K. J.; Tucker, A.; Woodrow, J.; Sadler, P. J., Cisplatin binding sites on human albumin. The Journal of biological chemistry 1998, 273 (24), 14721-30.
15. Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Li, W.; Qu, Y.; Luo, F.; Qian, Z., Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 2013, 34 (34), 8726-40.
16. Sugiyama, S.; Hayakawa, M.; Kato, T.; Hanaki, Y.; Shimizu, K.; Ozawa, T., Adverse-Effects of Anti-Tumor Drug, Cisplatin, on Rat-Kidney Mitochondria - Disturbances in Glutathione-Peroxidase Activity. Biochem Bioph Res Co 1989, 159 (3), 1121-1127.
17. Cragg, G. M., Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Medicinal research reviews 1998, 18 (5), 315-31.
18. Singla, A. K.; Garg, A.; Aggarwal, D., Paclitaxel and its formulations. International Journal of Pharmaceutics 2002, 235 (1-2), 179-192.
19. Zhao, L.; Wientjes, M. G.; Au, J. L., Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clinical cancer research : an official journal of the American Association for Cancer Research 2004, 10 (23), 7994-8004.
20. Cai, L. Q.; Xu, G. F.; Shi, C. Y.; Guo, D. D.; Wang, X.; Luo, J. T., Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2015, 37, 456-468.
21. Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X., A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials 2012, 33 (27), 6507-19.
22. Li, J.; Li, Z. H.; Li, M. H.; Zhang, H.; Xie, Z. G., Synergistic Effect and Drug-Resistance Relief of Paclitaxel and Cisplatin Caused by Co-Delivery Using Polymeric Micelles. J Appl Polym Sci 2015, 132 (6).

23. Poli, R.; Shaver, M. P., Atom transfer radical polymerization (ATRP) and organometallic mediated radical polymerization (OMRP) of styrene mediated by diaminobis(phenolato)iron(II) complexes: a DFT study. Inorg Chem 2014, 53 (14), 7580-90.
24. Ma, H.; Textor, M.; Clark, R. L.; Chilkoti, A., Monitoring kinetics of surface initiated atom transfer radical polymerization by quartz crystal microbalance with dissipation. Biointerphases 2006, 1 (1), 35.
25. Jin, S.; Li, D.; Yang, P.; Guo, J.; Lu, J. Q.; Wang, C. C., Redox/pH stimuli-responsive biodegradable PEGylated P(MAA/BACy) nanohydrogels for controlled releasing of anticancer drugs. Colloid Surface A 2015, 484, 47-55.
26. Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M., Glutathione levels in human tumors. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 2012, 17 (8), 671-91.
27. Ferruzzi, E.; Franceschini, R.; Cazzolato, G.; Geroni, C.; Fowst, C.; Pastorino, U.; Tradati, N.; Tursi, J.; Dittadi, R.; Gion, M., Blood glutathione as a surrogate marker of cancer tissue glutathione S-transferase activity in non-small cell lung cancer and squamous cell carcinoma of the head and neck. Eur J Cancer 2003, 39 (7), 1019-29.
28. Krepela, E.; Prochazka, J.; Karova, B.; Cermak, J.; Roubkova, H., Cathepsin B, thiols and cysteine protease inhibitors in squamous-cell lung cancer. Neoplasma 1997, 44 (4), 219-39.
29. Oberli-Schrammli, A. E.; Joncourt, F.; Stadler, M.; Altermatt, H. J.; Buser, K.; Ris, H. B.; Schmid, U.; Cerny, T., Parallel assessment of glutathione-based detoxifying enzymes, O6-alkylguanine-DNA alkyltransferase and P-glycoprotein as indicators of drug resistance in tumor and normal lung of patients with lung cancer. Int J Cancer 1994, 59 (5), 629-36.
30. Miatmoko, A., Kawano, K., Yonemochi, E. and Hattori, Y. Evaluation of Cisplatin-Loaded Polymeric Micelles and Hybrid Nanoparticles Containing Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) on Tumor Delivery. Pharmacology & Pharmacy 2016, 7, 1-8.
31. Twentyman, P. R.; Luscombe, M., A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 1987, 56 (3), 279-85.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code