Responsive image
博碩士論文 etd-0729116-130544 詳細資訊
Title page for etd-0729116-130544
論文名稱
Title
基於溫度計碼具有持續追蹤之全數位連續近似暫存器控制延遲鎖定迴路
All-Digital SAR-Controlled Delay-Locked Loop with Tracking System Based on Thermometer Code
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-25
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
連續近似暫存器、延遲鎖定迴路、二進位權重碼、溫度計碼、低功耗
delay lock loop, successive approximation register, binary-weighted code, thermometer code, low power
統計
Statistics
本論文已被瀏覽 5703 次,被下載 61
The thesis/dissertation has been browsed 5703 times, has been downloaded 61 times.
中文摘要
此全數位鎖定迴路(All-Digital Delay-Locked Loop,ADDLL)使用TSMC 90nm製程,採用數位相位偵測器(Digital Phase Detector,DFD)和連續近似暫存器(Successive Approximation Register,SAR)來控制數位延遲線(Digital Delay Line,DDL)以及一些控制單元(Control Unit)所組成。在全數位鎖定迴路裡,設計數位延遲線會是一個關鍵,它將影響整個全數位鎖定迴路的效能。延遲線的部分採用互補延遲線的方式來提高可鎖定的範圍,利用粗調及微調的方式來提高延遲的精準度,並且可以節省數位延遲線使用的電源,達到降低功率消耗和節省晶片面積。此全數位鎖定迴路採用10位元的逐次逼近暫存器來實現快速鎖定,並使用溫度計碼降低功率消耗及提升線性度。另外,在使用傳統式的連續近似暫存器,將因為在製程、電壓和溫度變異的環境中無法對電路做持續追蹤而造成電路的不正確,而為了避免全數位鎖定迴路死鎖的問題,因此會使用改良式連續近似暫存器來克服所面臨的問題,讓數位鎖定迴路在鎖定之後能夠持續對電路做追蹤。另外,可鎖定的範圍約從140 MHz到1 GHz,供應電壓為1 V,具有大約3.54 ps的延遲解析度,在1.4 GHz功率消耗為1.535 mW,時脈抖動(Jitter)在1.4 GHz為4.89 ps,鎖定時間在1 GHz為20個時脈週期。
Abstract
This All-Digital delay-locked loop uses TSMC90nm process. It uses digital phase detector and successive approximation register to control the digital delay line as well as some control units. The digital delay line is the key component of performance. The part of delay line uses a complementary way to improve the locking range and using coarse and fine tune to improve the resolution of delay. The digital delay line has low power consumption, small area, and high resolution. This ADDLL implements a 10-bit successive approximation register to achieve the fast locking and thermometer code to reduce power and improve linearity. In addition, the ADDLL may unlock caused by the process, voltage, and temperature (PVT) variations when it uses a conventional successive approximation register. An improved successive approximation register is proposed to overcome the problem caused by the dead lock. In addition, the simulated locking range is starting from 140 MHz to 1 GHz. The supply voltage is 1 V. The delay resolution is about 3.54 ps. The power is 1.535 mW at 1.4 GHz. The jitter is 4.89 ps at 1 GHz. The locking time of the proposed ADDLL is 20 clock cycles at 1 GHz.
目次 Table of Contents
論文審定書 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 研究動機 1
1.2 論文組織架構 2
第2章 延遲鎖定迴路簡介 3
2.1 鎖定迴路的應用 3
2.1-1 抑制時脈偏移 3
2.1-2 降低時脈抖動 4
2.2 鎖定迴路基本架構 5
2.3 延遲鎖定迴路的效能指標 6
2.3-1 靜態相位誤差(Static Phase Error) 6
2.3-2 操作範圍(Operating range) 7
2.3-3 鎖定時間(Locking Time) 7
2.3-4 時脈抖動(Jitter) 7
2.3-5 延遲解析度(Resolution) 8
2.4 延遲鎖定迴路 8
2.5 數位延遲鎖定迴路 11
第3章 數位延遲鎖定迴路設計 18
3.1 系統架構 18
3.2 相位偵測器 20
3.3 控制單元 23
3.3-1 具有持續追蹤之改良式連續近似暫存器 23
3.3-2 範圍選擇單元 27
3.3-3 時脈選擇單元 27
3.3-4 二進位至溫度計碼解碼器 28
3.3-5 除頻器 32
3.4 數位延遲線 33
3.4-1 粗調延遲線 33
3.4-2 細延遲線 34
第4章 數位鎖定迴路模擬 35
4.1 數位相位偵測器模擬 35
4.2 改良式連續近似暫存器模擬 36
4.3 數位延遲線模擬 37
4.3-1 延遲線線性度 37
4.3-2 延遲解析度 38
4.4 鎖定迴路模擬 40
4.5 時脈抖動模擬 41
4.6 靜態相位誤差模擬 43
4.7 電路規格與比較表 44
第5章 數位鎖定迴路晶片實現 46
5.1 晶片佈局(Layout) 46
第6章 結論與未來研究 48
6.1 結論 48
6.2 未來研究 48
參考文獻 49
參考文獻 References
[1] Al-Hussein A. El-Shafie, S. E. D. Habib, “A Novel N-bit SAR Implementation for All-Digital DLL Circuits,” 2010 International Conference on Microelectronics, pp. 427-430, December 2010.
[2] A. Rossi and G. Fucilli, “Nonredundant Successive Approximation Register for A/D Converters,” Electron Letter, vol. 32, no. 12, pp. 1055-1057, June 1996.
[3] Feng Lin, J. Miller, A. Schoenfeld, M. Ma, and R.J. Baker, “A Register-Controlled Symmetrical DLL for Double-Data-Rate DRAM,” IEEE Journal of Solid-State Circuits, vol. 34, no. 4, pp. 565-568, April 1999.
[4] G . K. Dehng, J. M. Hsu, C. Y. Yang, and S. I. Liu, “Clock-Deskew Buffer Using a SAR-Controlled Delay-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1128–1136, August 2000.
[5] Guang-Kaai Dehng, June-Ming Hsu, Ching-Yuang Yang, and Shen-Iuan Liu, “Clock-Deskew Buffer Using SAR-Controlled Delay-Locked Loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128-1136, February 2007.
[6] H. Sutoh, K. Yamakoshi, and M. Ino, “Circuit technique for skew-free clock distribution,” in IEEE Custom Integrated Circuits Conference, pp.163–166, 1995.
[7] Lei Wang, Leibo Liu, and Hongyi Chen, “An Implementation of Fast-Locking and Wide-Range 11-bit Reversible SAR DLL,” IEEE Transaction on Circuits and Systems-II: Express Briefs, vol. 57, no. 6, pp. 421-425, June 2010.
[8] Rong-Jyi Yang and Shen-Iuan Liu, “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 361-373 , February 2007.
[9] Rong-Jyi Yang, and Shen-Iuan Liu, “A 2.5 GHz All-Digital Delay-Locked Loop in 0.13 μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2338-2347, November 2007.
[10] Sebastian Hoyos, Cheongyuen W. Tsang, Johas Vanderhasegen, Yum Chiu, Yasutoshi Aibara, Haideh Khorramabadi, and Borivoje Nikolic, “A 15MHz to 600 MHz, 20mW 0.38mm2 Split Control, Fast Coarse Locking Digital DLL in 0.13m CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 564-568, March 2012.
[11] Shuai Chen, Hao Li, Kai Jia, Yue Wang, Xiaobing Shi, and Feng Zhang, “A Fast-Lock-in Wide-Range Harmonic-Free All-Digital DLL with a Complementary Delay Line,” in IEEE International Symposium on Circuits and Systems, pp. 1803-1806, May 2012.
[12] T. Hamamoto, Y. Konishi, and T. Yoshihara, “A 667Mb/s Operating Digital DLL Architecture for 512Mb DDR SDRAM,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 194-206, January 2004.
[13] Y. Okajima, M. Taguchi, M. Yanagawa, K. Nishimura, and O. Hamada, “Digital delay locked loop and design technique for high-speed synchronous interface,” IEICE Transaction on Electron, vol. E79-C, no. 6, pp. 798-807, June 1996.
[14] Young-Sang Kim, Seon-Kyoo Lee, Hong-June Park, and Jae-Yoon Sim, “A 110 MHz to 1.4 GHz Locking 40-Phase All-Digital DLL,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 435-444 , February 2011.
[15] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[16] J. H. Park, D. H. Jung, K. Ryu, and S. O. Jung, "ADDLL for Clock-Deskew Buffer in High-Performance SoCs," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, pp. 1368-1373, 2013.
[17] A. Djemouai and M. Sawan, “Fast-Locking Low-Jitter Integrated CMOS Phase-Locked Loop,” in IEEE International Symposium on Circuits and Systems, vol. 1, pp. 264-267, May 2001.
[18] Soh Lip-Kai, Sulaiman, M.S., Yusoff Z., “Fast-Lock Dual Charge Pump Analog DLL using Improved Phase Frequency Detector,” International Symposium on VLSI Design, Automation and Test, pp. 1-5, June 2007.
[19] A. Hatakeyama, H. Mochizuki, T. Aikawa, M. Takita, Y. Ishii, H. Tsuboi, Shin-ya Fujioka, S. Yamaguchi, M. Koga, Y. Serizawa, K. Nishimura, K. Kawabata, Y. Okajima, M. Kawano, H. Kojima, K. Mizutani, T. Anezaki, M. Hasegawa, and M. Taguchi, “A 256-Mb SDRAM Using a Register-Controlled Digital DLL,” IEEE Journal of Solid-State Circuits, vol. 32, no.11, pp. 1728-1734, April 1999.

[20] Jinn-Shyan Wang, Chun-Yuan Cheng, Je-Ching Liu, Yu-Chia Liu, and Yi-Ming Wang, “A Duty-Cycle-Distortion-Tolerant Half-Delay-Line Low-Power Fast-Lock-in All-Digital Delay-Locked Loop,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1036-1047, May 2010.
[21] Behzad Mesgazadeh and Atila Alvandpour, “A Low-Power Digital DLL-Based Clock Generator in Open-Loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 1907-1913, July 2009.
[22] Hsiang-Hui Chang, Jyh-Woei Lin, Ching-Yuan Yang, and Shen-Iuan Liu, “A Wide-Range Delay-Locked Loop with a Fixed Latency of One Clock Cycle,” IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp. 1021-1027, August 2002.
[23] G. K Dehng, J. W. Lin, S. Liu, “A fast-lock mixed-mode DLL using a 2-b SAR Algorithm” in IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1464-1471, October 2001.
[24] J. T. Kwak et al., “A low-cost high performance register-controlled digital DLL for 1Gbps x32 DDR SDRAM,” in Digest of Technical Papers, VLSI, pp. 283-284, 2003.
[25] K. C. Kuo and S. H. Li, "A wide-range and harmonic-free SAR all-digital delay locked loop," 2015 15th International Symposium on Communications and Information Technologies (ISCIT), Nara, pp. 197-200, 2015.
[26] L. Wang, L. Liu and H. Chen, “An Implementation of Fast-Locking and Wide-Range 11-bit Reversible SAR DLL,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 421-425, June 2010.
[27] C. Y. Yao, Y. H. Ho, Y. Y. Chiu and R. J. Yang, “Designing a SAR-Based All-Digital Delay-Locked Loop With Constant Acquisition Cycles Using a Resettable Delay Line,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 3, pp. 567-574, March 2015.
[28] Y. H. Ho and C. Y. Yao, “A Fast-Acquisition All-Digital Delay-Locked Loop Using a Starting-Bit Prediction Algorithm for the Successive-Approximation Register, ” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp. 759-763, Feb. 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code