Responsive image
博碩士論文 etd-0729116-132103 詳細資訊
Title page for etd-0729116-132103
論文名稱
Title
具大範圍升降壓比之雙向DC/DC轉換器
Bidirectional DC-DC Converter with Wide-Range Voltage Conversion Ratios
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-19
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
電動車與電網電能轉換、雙向DC/DC轉換器、倍壓電路、兩臂交錯式半橋、大範圍升降壓比
Wide-Range Voltage Conversion Ratios, Two-Phase Interleaved Half-Bridge Circuit, Vehical-to-Grid, Bidirectional DC-DC Converter, Voltage Doubler Circuit
統計
Statistics
本論文已被瀏覽 5705 次,被下載 33
The thesis/dissertation has been browsed 5705 times, has been downloaded 33 times.
中文摘要
本論文提出一個具有大範圍升降壓之雙向DC/DC轉換器,可適用於電動車與電網(Vehicle-To-Grid)電能轉換所需之雙向電能轉換,其大範圍升降壓比之特性,亦可用於現今電動機車、汽車、巴士、卡車等,不同電壓等級的汰役電池之電能轉換。論文中所提出之雙向DC/DC轉換器係利用兩臂交錯式半橋及倍壓電路所串接而成,論文中電路分析以兩臂交錯式半橋為A端,倍壓電路為B端探討各架構下的電路動作模式及電壓轉換比。當電路由A端至B端時,電路架構可依不同電壓等級之雙向電能轉換,而操作在交錯式升壓架構、單一升壓架構、堆疊降升壓架構及單一降壓架構;當電路由B端至A端時,電路架構則可依不同電壓操作在交錯式降壓架構、單一降壓架構、堆疊降升壓架構及單一升壓架構,進而實現大範圍升降壓比之雙向電能轉換。論文中實現一A端電壓150V、B端電壓25~1050V及額定功率1100W之雙向DC/DC轉換器,實驗結果證實所提電路可依不同電壓範圍而操作於不同架構,且最高轉換效率可達97%。
Abstract
A bidirectional DC-DC converter with wide-range voltage conversion ratios which can be used in the energy conversion of electric vehicle and vehicle-to-grid applications is proposed in this thesis. The characteristic of wide-range voltage conversion ratios can also be utilized in the energy conversion of retired battery packs with different voltage levels, such as electric scooters, electric vehicles, electrical buses, electric trucks etc. The proposed converter is composed of cascading a two-phase interleaved half-bridge circuit and a voltage-double circuit. The two-phase interleaved half-bridge circuit and the voltage-double circuit are defined as terminal A and terminal B, respectively to investigate the operational states of the proposed converter and analyze the voltage conversion ratios under different operational modes. From terminals A to B, the proposed converter can be operated in the interleaved-boost mode, single-boost mode, cascade-buck-boost mode or single-buck mode with respect to the voltage level of terminal B. In contrast, the proposed converter can be operated in the interleaved-buck mode, single-buck mode, cascade-buck-boost mode or single-boost mode from terminals B to A. A prototype for the proposed bidirectional DC-DC converter with a rated voltage of 150V at terminal A, a rated voltage between 25V and 1050V at terminal B and a rated power of 1100W is designed and implemented in this thesis. Experimental results demonstrate that the proposed bidirectional converter can be operated in the different modes with respect to different voltage levels. Meanwhile, a maximum conversion efficiency of 97% can be achieved.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 5
1-3 論文大綱 6
第二章 相關電路架構介紹 8
2-1傳統升壓及降壓轉換器 8
2-2高升降壓比轉換器 10
2-3雙向升降壓轉換器 11
2-4雙向隔離型轉換器 13
第三章 大範圍高升降壓比之雙向DC/DC轉換器介紹 17
3-1 A端至B端穩態操作模式原理分析 17
3-1-1 A端至B端操作於交錯式升壓架構 19
3-1-2 A端至B端操作於單一升壓架構 25
3-1-3 A端至B端操作於堆疊降升壓架構 29
3-1-4 A端至B端操作於單一降壓架構 35
3-2 B端至A端穩態操作模式原理分析 39
3-2-1 B端至A端操作於交錯式降壓架構 40
3-2-2 B端至A端操作於單一降壓架構 46
3-2-3 B端至A端操作於堆疊式降升壓架構 49
3-2-4 B端至A端操作於單一升壓架構 55
第四章 電路設計與控制 59
4-1電路元件與參數設計 59
4-1-1電感設計 59
4-1-2輸出電容元件選擇 61
4-1-3功率開關元件選擇 62
4-2周邊電路設計 62
4-3控制晶片設計 66
4-3-1 TMS320F28335數位訊號控制器與CCStudio簡介 66
4-3-2 程式設計流程介紹 68
第五章 電路測試規格與實驗結果 71
5-1 A端至B端各架構實驗波形 74
5-1-1 交錯式升壓架構 74
5-1-2 單一升壓架構 76
5-1-3 堆疊式降升壓架構 78
5-1-4 單一降壓架構 80
5-2 B端至A端各模式實驗波形 82
5-2-1 交錯式降壓架構 82
5-2-2 單一降壓架構 84
5-2-3 堆疊式降壓架構 86
5-2-4 單一升壓架構 88
5-3 輸出效率測試 90
第六章 結論與未來展望 103
6-1結論 103
6-2未來展望 104
參考文獻 105
參考文獻 References
[1] R. Mario, “Power systems of the future. I,” IEEE Power Engineering Review, vol. 20, pp. 5-16, Aug. 2000.
[2] G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley, M. Narayana, “Impact of electric vehicles on power distribution networks,” IEEE Vehicle Power and Propulsion Conference(VPPC), Dearborn, MI, pp. 827-831, Sept. 2009.
[3] Z. G. Zheng, T. T. Liu, Y. H. Zhang, X. Cheng, “Analysis on development trend of electric vehicle charging mode,” in Proc. IEEE ICEOE, Dalian, pp. 440-442, Jul. 2011.
[4] 鄧人豪、廖書鴻、溫朝凱、盧展南、江志杰,“電動車充電站利用率的提升方法及其系統”,研究成果專利,中華民國103年。
[5] SAE International, http://www.sae.org/
[6] Optocouplers Help Promote Safe, Efficient EV Charging Stations, http://electronicdesign.com/power/optocouplers-help-promote-safe-efficient-ev-charging-stations/
[7] Electric Vehicle Charging Levels Explained, http://insideevs.com/charging-levels-explained-bower/
[8] CHAdeMo certified Charger List, http://www.chademo.com/wp/chademocharger/
[9] M. A. Mustafa, Zhang. Ning, G. Kalogridis, F. Zhong, “Smart electric vehicle charging: Security analysis,” in Proc. IEEE ISGT, Washington, DC, pp. 1-6, Feb. 2013.
[10] 廖書鴻、劉益華、溫朝凱、江志杰、鄧人豪,“小型電動車充電站之能源管理系統測試平台”,中華民國第三十四屆電力工程研討會,2013年12月6-7日。
[11] S. X. Wang, N. Zhang, Z. Li, M. Shahidehpour, “Modeling and impact analysis of large scale V2G electric vehicles on the power grid,” in Proc. IEEE PES ISGT, Tianjin, pp. 1-6, May 2012.
[12] T. Zhang, W. Chen, Z. Han, Z. Cao, “Charging scheduling of electric vehicles with local renewable energy under uncertain electric vehicle arrival and grid power price,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2600-2612, Jul. 2014.
[13] S. S. Hosseini, A. Badri, M. Parvania, “The plug-in electric vehicles for power system applications: The vehicle to grid (V2G) concept,” in Proc. IEEE ENERGYCON, Florence, pp. 1101–1106, Sept. 2012.
[14] L. Shi, A. Meintz, M. Ferdowsi, “Single-phase bidirectional AC-DC converters for plug-in hybrid electric vehicle applications,” IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, pp. 1–5, Sep. 2008.
[15] J. Neubauer, P. Ahmad, “PHEV/EV Li-Ion battery second-use project,” NREL/PR-540-48018, pp. 1628-1634, Apr. 2010.
[16] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE Power and Energy Magazine, vol.5, no.4, pp. 78-94, July-Aug. 2007.
[17] M. V. Micea, L. Ungurean, G. N. Carstoiu, V. Groza, “Online state-of-health assessment for Battery Management Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 6, Jun. 2011.
[18] SAE International, “SAE electric vehicle and plug in hybrid electric vehicle conductive charge coupler,” Jan. 2010.
[19] CHAdeMO Association, “Electric vehicle quick charger installation and operation manual,” Jul. 2011.
[20] 吳志忠,“電動車電池管理系統與充電法規 (SAE J1772)之研究”,國立高雄第一科技大學,中華民國101年11月。
[21] 陳敏睿,“具高升降壓比之新型雙向全波整流電路”,國立中山大學,中華民國102年9月。
[22] X. Mu, M. Li, F. Liu, “Research on the gain coverage of boost DC/DC converting circuit voltage,” in Proc. IEEE PEDS, Kitakyushu, pp. 1269–1274, Apr. 2013.
[23] C. Zhou, R. B. Ridley, F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PEDS, San Antonio, TX, USA, pp. 800–807, Jun. 1900.
[24] C. Chen, C. Wang, F. Hong, “Research of an interleaved boost converter with four interleaved boost convert cells,” in Proc. IEEE PRIMEASIA, Shanghai, pp. 396–399, Jan. 2009.
[25] 陳彥名,“新型電流模式直流-直流降壓轉換器與負電壓低壓降電壓調整器之研製”,國立台北科技大學,中華民國96年6月。
[26] G. P. Muralidharan, K. Bhaskar, “High step-down conversion ratio interleaved dc-dc converter,” in Proc. IEEE ICECCT, Coimbatore, pp. 1–4, Mar. 2015.
[27] C. T. Pan, C. F. Chuang, C. C. Chu, “A novel transformerless interleaved high step-down conversion ratio DC–DC converter With Low Switch Voltage Stress,” IEEE Transactions on Industrial Electronics, vol. 61, No. 10, pp. 5290-5299., Oct. 2014.
[28] J. K. Reed, G. Venkataramanan, “Bidirectional high conversion ratio DC-DC converter,” in Proc. IEEE PECI, Champaign, IL, pp. 1–5, Feb. 2012.
[29] S. Waffler, J. W. Kolar, “A novel low-loss modulation strategy for high-power bidirectional buck + boost converters,” IEEE Transactions on Power Electron. vol. 24, no. 6, pp. 1589–1599, Jun. 2009.
[30] L. Schirone, M. Macellari, “Loss Analysis of Low-Voltage TLNPC Step-Up Converters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6081–6090, Nov. 2014.
[31] C. C. Lin, L. S. Yang, G. W. Wu, “Study of a non-isolated bidirectional DC-DC converter,” IET Power Electronics, vol. 6, pp. 30–37, Jan. 2013.
[32] 廖長鴻,“高功率雙向全橋直流/直流轉換器的研製”,國立台北科技大學,中華民國99年7月。
[33] X. Li, A. K. S. Bhat, “Analysis and Design of High-Frequency Isolated Dual-Bridge Series Resonant DC/DC Converter,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 850–861, Apr. 2010.
[34] F. Krismer, J. Biela, J. W. Kolar, “A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range,” Fourtieth IAS Annual Meeting. Conference Record of the Industry Applications Conference, vol. 1, pp. 599–606, Oct. 2005.
[35] 蔡偉倫,“具高升降壓比之新型雙向全波整流電路”,國立中山大學,中華民國104年8月。
[36] 磁性元件的角色與功能, http://pemclab.cn.nctu.edu.tw
[37] 黃思倫、馬元懷、陳軍翰、張諺儒,“數位控制之基於SiC元件的功率因數修正器研製”,逢甲大學,中華民國104年12月。
[38] 符曉、朱洪順,“TMS320F2833X DSP應用開發與實踐”,北京航空航天大學出版社。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code