Responsive image
博碩士論文 etd-0729116-142939 詳細資訊
Title page for etd-0729116-142939
論文名稱
Title
光動力溶瘤病毒治療於抗藥性癌症之應用
Light-triggered Oncolytic Virotherapy Overcome Multidrug Resistance Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-22
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
KillerRed、光動力治療、腺相關病毒、磁性奈米粒子、多重抗藥性
Photodynamic therapy, Adeno-associated virus, Multidrug Resistance, Iron oxide nanoparticles, KillerRed
統計
Statistics
本論文已被瀏覽 5726 次,被下載 29
The thesis/dissertation has been browsed 5726 times, has been downloaded 29 times.
中文摘要
在目前的癌症治療中,由於長期接受藥物治療下所產生的抗藥性問題為癌症治療過程中最主要的阻礙之一,其主要機制可由多種模式控制,而其中最常見的方式為透過細胞膜表面過度表現的 p-glycoprotein 將進入細胞的藥物排出細胞外,該過程為耗能之主動運輸。有鑑於此,實驗中期望能夠利用外表修飾磁性奈米鐵之腺相關病毒 Ironized-AAV2,在外部磁場輔助下來達到改善抗藥性的問題,且具有控制病毒移動的功能,並同時提升病毒進入細胞的能力。實驗中將以綠色螢光蛋白 GFP 基因進行佐證及最佳化,來驗證此基因輸送系統確實得以改善抗藥性問題;進而作為攜帶基因 KillerRed,經轉錄轉譯後所表現之蛋白可作為光動力治療中所需之光敏劑。證明當腺相關病毒攜帶具有功能基因序列時,可以應用於不同治療中,本研究之實驗結果說明了腺相關病毒表面在修飾磁性奈米鐵後,可以透過外部磁場輔助下來控制病毒移動,亦可改善抗藥性問題並且同時應用於光動力治療中。此載體同時具備改善抗藥性問題、靶向性且可提升腺相關病毒所攜帶物質進入細胞之能力,由於可應用於光動力治療中,為一安全且具有高度發展潛力之輸送系統,並期許未來可應用於疾病及癌症治療中。
Abstract
Recently, multidrug-resistant (MDR) is one of the major challenges in cancer therapy when the patients have been treated with the chemotherapy. Among potential factors associated with MDR, overexpression of P-glycoprotein (P-gp) has been commonly implicated in resistance to chemotherapeutic drugs. However, the pump drugs out of cancer cells of major mechanism triggered by P-gp overexpression has enhanced the survival rate of MDR cancer cells. In this study, we utilizes the adeno-associated virus serotype 2 (AAV2) chemically modified with iron oxide nanoparticles (~ 5 nm). ”Ironized-AAV2” displays a controllable viral distribution through a magnetic field (2000 – 4000 Gauss) and overcomes the pump drugs out of MDR human breast cancer MCF-7 cells with P-gp overexpression. Consequently, Ironized-AAV2 improved the cell uptake of viral particles compared with virus alone. Furthermore, a gene for production of the photosensitive protein KillerRed was introduced into the AAV2 genome to endow photo-dynamic therapy (PDT); or light-triggered oncolytic virotherapy (OV). In vitro experiments revealed that magnetic guidance of “ironized” AAV2-KillerRed in conjunction with PDT significantly decreases the cell viability of cancer cell via apoptosis. This proof-of-concept could be a treatment of MDR cancer by guided and highly localized micro-scale, light-triggered OV.
目次 Table of Contents
審定書…………………………………………………………………………. I
授權書…………………………………………………………………………. ii
致謝……………………………………………………………………………. iii
中文摘要………………………………………………………………………. iv
英文摘要………………………………………………………………………. v
目錄……………………………………………………………………………. vi
圖次……………………………………………………………………………. ix
表次……………………………………………………………………………. x

第 一 章 前言…...………………………………………………………….. 1
1-1 癌症治療...………………………………………………………….... 1
1-1-1概況...…………………………………………...………………. 1
1-1-2外科手術治療...……………………………………...…………. 1
1-1-3放射治療...…………………………………...…………………. 2
1-1-4化學藥物治療...………………………………...………………. 2
1-2多重抗藥性與常見之癌症……………………………………………. 4
1-2-1多重抗藥性…..…………………………………………………. 4
1-2-2乳癌……………………………………………………………... 6
1-3基因及藥物輸送系統…………………………………………………. 7
1-3-1腺相關病毒……………………………………………………... 9
1-3-2磁性奈米鐵粒子………………………………………………... 10
1-4光動力治療……………………………………………………………. 10
1-5研究動機與目的………………………………………………………. 12

第 二 章 材料及實驗方法…………………………………………………. 13
2-1 實驗材料……………………………………………………………... 13
2-2 實驗方法……………………………………………………………... 14
2-2-1細胞培養………………………………………………………... 14
2-2-2腺相關病毒AAV-2備製……………………………………….. 14
2-2-2-1高效能轉化大腸桿菌D5α之轉型作用…………………. 14
2-2-2-2質體 DNA之純化……………………………………….. 15
2-2-2-3腺相關病毒AAV2備製前期-共轉染……………………. 15
2-2-2-4腺相關病毒AAV2備製後期-病毒純化…………………. 16
2-2-2-5不同濃度 DOX 於普通及抗藥性細胞株之細胞活性及抗藥性檢測………………………………………………... 18
2-2-3材料合成………………………………………………………... 19
2-2-3-1磁性奈米鐵粒子修飾之腺相關病毒 Ironized-AAV2….. 19
2-2-3-2材料物性測試…………………………………………….. 19
2-2-3-3材料毒性測試…………………………………………….. 20
2-2-3-4備製比例最佳化I…………………………………………20
2-2-3-5備製比例最佳化II及局部磁吸控制病毒移動之檢測….. 21
2-2-3-6不同磁吸方式對於基因表現之影響及比較…………….. 21
2-2-4磁性奈米鐵粒子修飾之腺相關病毒 Ironized-AAV2 於光動治療之應用……………………………………………………. 22
2-2-4-1細胞之光照時間耐受度及最佳化……………………….. 22
2-2-4-2 KillerRed 紅色螢光蛋白表現與光源照射後之紅色螢
光蛋白之定性觀察及細胞活性之檢測之測試…………... 22
2-2-4-3 KillerRed 蛋白表現並比較光照前後活細胞與死細胞之檢測…………………………………………………... 23
2-2-4-4 KillerRed 蛋白表現並觀察光照後活性氧化物質 (ROS) 之產生情形…………………………………….. 23
2-2-4-5 KillerRed 蛋白表現並比較光照前後細胞凋亡情形…... 24
2-2-4-6 Ironized-AAV2(KR) 之移動並觀察光照後細胞凋亡及活細胞與死細胞之檢測情形…………………………... 25

第 三 章 結果與討論………………………………………………………. 27
3-1腺相關病毒AAV-2備製及抗藥性細胞株之抗藥性檢測……………27
3-1-1高效能轉化大腸桿菌 D5α之轉型作用………………………. 27
3-1-2質體 DNA 純化後之濃度及功能檢測………………………... 27
3-1-3腺相關病毒AAV2備製…………………………………………30
3-1-4不同濃度 DOX 於普通細胞株及抗藥性細胞株之細胞活性比較……………………………………………………………. 31
3-2磁性奈米鐵與腺相關病毒之合成……………………………………. 33
3-2-1磁性奈米鐵粒子修飾之腺相關病毒之物性檢測……….. 33
3-2-2材料毒性測試…………………………………………………... 34
3-2-3磁性奈米鐵粒子:EDC之合成比例最佳化……………………35
3-2-4不同磁吸方式對於基因表現之影響及比較…………………... 38
3-3磁性奈米鐵粒子修飾之腺相關病毒 Ironized-AAV2 於光動力治療之應用…………………………………………………………... 40
3-3-1細胞之光照時間耐受度及最佳化……………………………... 40
3-3-2交替磁場輔助下 KillerRed 紅色螢光蛋白表現之測試……... 41
3-3-3外部磁場輔助下 KillerRed 蛋白光源照射後之紅色螢光蛋白之定性觀察及細胞活性之檢測……………………………. 42
3-3-4外部磁場輔助下提升 KillerRed 蛋白表現並比較光照前後活細胞與死細胞之檢測………………………………………. 44
3-3-5外部磁場輔助下提升 KillerRed 蛋白表現並觀察光照後活性氧化物質 (ROS) 之產生情形…………………………….. 47
3-3-6外部磁場輔助下提升 KillerRed 蛋白表現並比較光照前後細胞凋亡情形…………………………………………………. 48
3-3-7外部磁場輔助下控制 Ironized-AAV2(KR) 之移動並觀察光照後細胞凋亡及活細胞與死細胞之檢測情形………………. 51

第 四 章 結論……………………………………………... 53
參考文獻………………………………………………………………... 54
參考文獻 References
[1] Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics. 2014;4:240-55.
[2] Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207-14.
[3] Epstein RJ. Maintenance therapy to suppress micrometastasis: the new challenge for adjuvant cancer treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11:5337-41.
[4] Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemical reviews. 2010;110:2795-838.
[5] Boehncke WH, Elshorst-Schmidt T, Kaufmann R. Systemic photodynamic therapy is a safe and effective treatment for psoriasis. Archives of dermatology. 2000;136:271-2.
[6] Noppen M, Meysman M, Van Herreweghe R, Lamote J, D'Haese J, Vincken W. Bronchoscopic cryotherapy: preliminary experience. Acta clinica Belgica. 2001;56:73-7.
[7] Ozturan S, Sirali A, Sur H. Effects of Nd:YAG laser irradiation for minimizing edema and pain after sinus lift surgery: randomized controlled clinical trial. Photomedicine and laser surgery. 2015;33:193-9.
[8] Shan G, Weissleder R, Hilderbrand SA. Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics. 2013;3:267-74.
[9] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. International journal of medical sciences. 2012;9:193-9.
[10] Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature reviews Cancer. 2015;15:409-25.
[11] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. International journal of medical sciences. 2012;9:193-9.
[12] Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2010;31:363-72.
[13] Stubbe CE, Valero M. Complementary strategies for the management of radiation therapy side effects. Journal of the advanced practitioner in oncology. 2013;4:219-31.
[14] Ahlgren JD. Chemotherapy for pancreatic carcinoma. Cancer. 1996;78:654-63.
[15] Estanqueiro M, Amaral MH, Conceicao J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids and surfaces B, Biointerfaces. 2015;126:631-48.
[16] Ben Colagiuri P, Haryana Dhillon, PhD, Phyllis N. Butow, PhD,Jesse Jansen, PhD, Keith Cox, RN, Onc Cert, NP, MNursPrac, andJeralyn Jacquet, BA (Psych). Does Assessing Patients’ Expectancies About Chemotherapy Side Effects Influence Their Occurrence? Journal of pain and symptom management. 2013;46:7.
[17] Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochemical pharmacology. 2013;85:1219-26.
[18] Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Advanced drug delivery reviews. 2013;65:1699-715.
[19] Peng J, Garcia MA, Choi JS, Zhao L, Chen KJ, Bernstein JR, et al. Molecular recognition enables nanosubstrate-mediated delivery of gene-encapsulated nanoparticles with high efficiency. ACS nano. 2014;8:4621-9.
[20] Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of controlled release : official journal of the Controlled Release Society. 2014;190:398-414.
[21] Zhou Z, Ma X, Jin E, Tang J, Sui M, Shen Y, et al. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials. 2013;34:5722-35.
[22] Zhao M, Liu Y, Hsieh RS, Wang N, Tai W, Joo KI, et al. Clickable protein nanocapsules for targeted delivery of recombinant p53 protein. Journal of the American Chemical Society. 2014;136:15319-25.
[23] Diogo Mendes CA, Noémia Afonso, Fátima Cardoso, José Luís Passos-Coelho, Luís Costa, Sofia Andrade and Francisco Batel-Marques. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer - a systematic review. Mendes et al Breast Cancer Research. 2015:1-14.
[24] Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacology & therapeutics. 2000;85:217-29.
[25] Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in pharmacology. 2014;5:159.
[26] Director Ap. P-glycoprotein and its role in drug-drug interactions. Australian Prescriber. 2014;37.
[27] Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer research. 2009;69:3918-26.
[28] Ren T, Wu W, Jia M, Dong H, Li Y, Ou Z. Reduction-cleavable polymeric vesicles with efficient glutathione-mediated drug release behavior for reversing drug resistance. ACS applied materials & interfaces. 2013;5:10721-30.
[29] Shang-Hsun Tsou T-MC, Hui-Ting Hsiao, Yen-Hui Chen. A Critical Dose of Doxorubicin Is Required to Alter the Gene Expression Profiles in MCF-7 Cells Acquiring Multidrug Resistance. PloS one. 2015:24.
[30] Tsou SH, Hou MH, Hsu LC, Chen TM, Chen YH. Gain-of-function p53 mutant with 21-bp deletion confers susceptibility to multidrug resistance in MCF-7 cells. International journal of molecular medicine. 2016;37:233-42.
[31] Cojoc M, Mabert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Seminars in cancer biology. 2015;31:16-27.
[32] Limin Pan JL, Qianjun He, Lijun Wang, Jianlin Shi. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 2013;34:12.
[33] DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2015;24:1495-506.
[34] Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47-54.
[35] Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2015;26 Suppl 5:v8-30.
[36] Bartelink H, Horiot JC, Poortmans P, Struikmans H, Van den Bogaert W, Barillot I, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. The New England journal of medicine. 2001;345:1378-87.
[37] Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687-717.
[38] Kim JS, Kim E, Oh JS, Jang JH. Integration of adeno-associated virus-derived peptides into nonviral vectors to synergistically enhance cellular transfection. Biomacromolecules. 2013;14:2136-45.
[39] Zhang J, Lei Y, Dhaliwal A, Ng QK, Du J, Yan M, et al. Protein-polymer nanoparticles for nonviral gene delivery. Biomacromolecules. 2011;12:1006-14.
[40] Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nature biotechnology. 2012;30:658-70.
[41] Tanner S. Miest aRC. New viruses for cancer therapy : meeting clinical needs. Nature Reviews Microbiology. 2013:1-12.
[42] Ledford H. Cancer-fighting viruses win approval. Nature. 2015;526:622-3.
[43] McClure C, Cole KL, Wulff P, Klugmann M, Murray AJ. Production and titering of recombinant adeno-associated viral vectors. Journal of visualized experiments : JoVE. 2011:e3348.
[44] Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 2015;21:84-98.
[45] Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular therapy : the journal of the American Society of Gene Therapy. 2008;16:1073-80.
[46] Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PloS one. 2013;8:e76310.
[47] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews. 2008;60:1615-26.
[48] Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods in molecular biology. 2010;624:25-37.
[49] Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nature reviews Drug discovery. 2015;14:203-19.
[50] Nicolas Bertrand J, Xiaoyang Xu, NazilaKamaly, OmidC.Farokhzad Cancer nanotechnology: The impact of passive and active targeting in the era ofmodern cancer biology. Advanced drug delivery reviews. 2013:1-24.
[51] Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS nano. 2013;7:5091-101.
[52] Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small. 2008;4:1925-9.
[53] Chen B, Wu W, Wang X. Magnetic iron oxide nanoparticles for tumor-targeted therapy. Current cancer drug targets. 2011;11:184-9.
[54] Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials. 2016;75:71-81.
[55] Gozde S. Demirera ACO, Seda Kizilel. Synthesis and Design of Biologically Inspired Biocompatible Iron Oxide Nanoparticles for Biomedical Applications. Journal of Materials Chemistry B. 2015;00:24.
[56] Yu J, Hsu CH, Huang CC, Chang PY. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS applied materials & interfaces. 2015;7:432-41.
[57] Devine A. Killing Mesothelioma Cells With Lasers. https://wwwmesotheliomaguidecom/treatment/cure/photodynamic-therapy/. 2014.
[58] Małgorzata Wachowska AM, Małgorzata Firczuk , Magdalena Gabrysiak , Magdalena Winiarska , Małgorzata Wańczyk , Kamil Bojarczuk and Jakub Golab Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer Molecules. 2011;16:4140-64.
[59] Liao ZX, Li YC, Lu HM, Sung HW. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials. 2014;35:500-8.
[60] O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochemistry and photobiology. 2009;85:1053-74.
[61] Maria E Bulina DMC, Olga V Britanova, Yurii G Yanushevich, Dmitry B Staroverov, Tatyana V Chepurnykh, Ekaterina M Merzlyak, Maria A Shkrob, Sergey Lukyanov & Konstantin A Lukyanov. A genetically encoded photosensitizer. Nature biotechnology. 2006;24:95-9.
[62] Shirmanova M, Yuzhakova D, Snopova L, Perelman G, Serebrovskaya E, Lukyanov K, et al. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PloS one. 2015;10:e0144617.
[63] Kuznetsova DS, Shirmanova MV, Dudenkova VV, Subochev PV, Turchin IV, Zagaynova EV, et al. Photobleaching and phototoxicity of KillerRed in tumor spheroids induced by continuous wave and pulsed laser illumination. Journal of biophotonics. 2015;8:952-60.
[64] Bulina ME, Lukyanov KA, Britanova OV, Onichtchouk D, Lukyanov S, Chudakov DM. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature protocols. 2006;1:947-53.
[65] LaBauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Current protocols in microbiology. 2012;Chapter 6:Unit 6E 1.
[66] Chu W, Zhou S, Zhu W, Zhuang X. Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Scientific reports. 2014;4:5446.
[67] Farias MV, Lendez PA, Marin M, Quintana S, Martinez-Cuesta L, Ceriani MC, et al. Toll-like receptors, IFN-gamma and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Research in veterinary science. 2016;107:190-5.
[68] Megan L. Shepherd D, PhD, William S. Swecker , Jr., DVM, PhD, Monica A. Ponder , PhD. Effect of Two Different Commercial DNA Extraction Kits on the Bacterial 16S rRNA gene Denaturing Gradient Gel Electrophoresis Profile of Arabian Gelding Feces Journal of equine veterinary science. 2015;14.
[69] Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free radical biology & medicine. 2010;48:749-62.
[70] Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods in molecular biology. 2012;887:41-7.
[71] Posimo JM, Unnithan AS, Gleixner AM, Choi HJ, Jiang Y, Pulugulla SH, et al. Viability assays for cells in culture. Journal of visualized experiments : JoVE. 2014:e50645.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code