Responsive image
博碩士論文 etd-0729116-155659 詳細資訊
Title page for etd-0729116-155659
論文名稱
Title
以分子動力學模擬探討聚甲基丙烯酸甲酯與銀奈米粒子複合物之機械性質
Investigating the Mechanical Properties of Polymethylmethacrylate/Silver Nanoparticle Composites by Molecular Dynamics Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
分子動力學、銀奈米粒子、聚甲基丙烯酸甲酯、機械性質
Molecular dynamics, PMMA, Ag nanoparticle, Mechanical property
統計
Statistics
本論文已被瀏覽 5704 次,被下載 818
The thesis/dissertation has been browsed 5704 times, has been downloaded 818 times.
中文摘要
本研究利用分子動力學模擬探討聚甲基丙烯酸甲酯混和不同比例(重量百分比0.60 wt%以及1.77 wt%)銀奈米粒子複合物以及在不同溫度下(室溫、熔點溫度、550K)之機械性質,為確保模擬之準確性,本研究建立一套混合勢能系統以完整描述高分子及金屬之作用能量。聚甲基丙烯酸甲酯在添加進銀奈米粒子之後,其複合物的楊氏模數(Young’s modulus)以及最大抗拉強度(ultimate stress)與純聚甲基丙烯酸甲酯相比之下皆會提昇,這也代表混入銀奈米粒子會有效的提升聚甲基丙烯酸甲酯的機械性質。但是,在高溫下不管是純聚甲基丙烯酸甲酯或著是混入銀奈米粒子之複合物其楊氏模數以及最大抗拉強度與在室溫下相比皆會降低,這也代表溫度是影響機械性質的重要因素。
Abstract
The effect of weight fraction on the tensile behavior of the polymethylmethacrylate (PMMA) with mixing silver nanoparticles (PMMA/AgNPs) was investigated using molecular dynamics simulation (MD). The mechanical properties of PMMA/AgNPs were calculated and analyzed at different weight fraction of AgNPs (0.60 wt%, and 1.77 wt%) and different temperature which corresponding room temperature, melting point (400K) and molten phase (550K). After adding AgNPs into PMMA, the Young’s modulus, and tensile strength of PMMA were greatly increased with weight fraction rising indicating that the AgNPs enhanced its mechanical properties. However, at high temperature, the Young’s modulus of both the PMMA and the PMMA /AgNPs exhibited significantly reduced from room temperature to high temperature, as the mechanical properties of PMMA /AgNPs were primarily dominated by temperature.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
圖次 vii
表次 ix
符號說明 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 聚甲基丙烯酸甲酯與銀奈米粒子簡介 3
1.2.1 聚甲基丙烯酸甲酯 (PMMA) 3
1.2.2 銀奈米粒子 (Ag nanoparticle, AgNP) 4
1.3聚甲基丙烯酸甲酯混和銀奈米粒子之文獻回顧 5
1.3.1實驗文獻 5
1.3.2模擬文獻 8
1.4 本文架構 9
第二章 模擬方法與理論介紹 10
2.1 分子動力學 10
2.1.1 PCFF力場 11
2.1.2金屬元素優化PCFF力場 13
2.1.3 Tight-Binding勢能 14
2.1.4 運動方程式 15
2.1.5 積分法則 16
2.1.6 系綜 17
2.1.7 諾斯-胡佛恆溫法 18
第三章 數值模擬方法 19
3.1 週期性邊界 19
3.2 鄰近原子表列法 20
3.2.1 截斷半徑法 20
3.2.2 維理表列法 21
3.2.3 巢室表列法 22
3.2.4 維理表列法結合巢室表列法 23
3.3 分子動力學流程圖 24
3.4 統計之參數計算 25
3.4.1徑向密度分布(Radial density profile) 25
3.4.2分子表面網格(surface mesh)的建構 26
3.4.3區域應變分析 (Local shear strain) 26
3.4.4原子級應力計算理論 27
3.4.5自由體積計算 (Free volume increase percentage) 28
第四章 結果分析與討論 30
4.1聚甲基丙烯酸甲酯混和銀奈米粒子之物理模型 30
4.1.1聚甲基丙烯酸甲酯物理模型 30
4.1.2聚甲基丙烯酸甲酯混和銀奈米粒子物理模型 30
4.1.3平衡結構之徑向密度分佈 33
4.2拉伸試驗與機械性質探討 35
4.2.1拉伸模型建立 35
4.2.2應力應變圖 36
4.2.3區域應變圖 37
4.2.4孔隙率分析 40
4.2.5自由體積增加率(FVIP) 42
4.2.6第一鄰近原子鍵長變化 44

4.3不同溫度下的機械性質分析以及結構的變化 48
4.3.1複合物之熱穩定性 48
4.3.2不同溫度之應力應變曲線 50
4.3.3高溫之區域應變分析 50
4.3.4高溫之鄰近原子鍵長分析 52
第五章 結論與未來展望 56
5.1 結論 56
5.1.1 PMMA/AgNP複合物於室溫環境下之結論 56
5.1.2 PMMA/AgNP複合物於高溫環境下之結論 57
5.2 未來展望 58
參考文獻 59
參考文獻 References
1. Rafiee, M.A., et al., Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 2009. 3(12): p. 3884-3890.
2. Agag, T., T. Koga, and T. Takeichi, Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer, 2001. 42(8): p. 3399-3408.
3. Ahmad, I., et al., Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations. Composites Science and Technology, 2010. 70(8): p. 1199-1206.
4. Zhao, L., et al., Thermal stability and rheological behaviors of high-density polyethylene/fullerene nanocomposites. J. Nanomaterials, 2012. 2012: p. 5-5.
5. Leszczyńska, A., et al., Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta, 2007. 453(2): p. 75-96.
6. Petersson, L., I. Kvien, and K. Oksman, Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 2007. 67(11–12): p. 2535-2544.
7. Zhi, C., et al., Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials, 2009. 21(28): p. 2889-2893.
8. Zhou, T., et al., Improving Dielectric Properties of BaTiO3/Ferroelectric Polymer Composites by Employing Surface Hydroxylated BaTiO3 Nanoparticles. ACS Applied Materials & Interfaces, 2011. 3(7): p. 2184-2188.
9. Lu, H.H., et al., Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Journal of Biomedical Materials Research Part A, 2003. 64A(3): p. 465-474.
10. Kendall, M.J. and C.R. Siviour, Rate dependence of poly(vinyl chloride), the effects of plasticizer and time–temperature superposition. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 470(2167).
11. Coleman, J.N., et al., Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 2006. 44(9): p. 1624-1652.
12. Tamayo, L.A., et al., Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Materials Science and Engineering: C, 2014. 40: p. 24-31.
13. Huang, X., P. Jiang, and L. Xie, Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Applied Physics Letters, 2009. 95(24): p. 242901.
14. Sánchez-Valdes, S., et al., Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. Journal of Applied Polymer Science, 2009. 111(2): p. 953-962.
15. Cole, D.H., et al., Dynamic Properties of a Model Polymer/Metal Nanocomposite:  Gold Particles in Poly(tert-butyl acrylate). Macromolecules, 1999. 32(3): p. 771-779.
16. Li, W.-R., et al., Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 2010. 85(4): p. 1115-1122.
17. Lubick, N., Nanosilver toxicity: ions, nanoparticles or both? Environmental Science & Technology, 2008. 42(23): p. 8617-8617.
18. Ma, P.C., B.Z. Tang, and J.-K. Kim, Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 2008. 46(11): p. 1497-1505.
19. Mbhele, Z., et al., Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemistry of Materials, 2003. 15(26): p. 5019-5024.
20. Akamatsu, K., et al., Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films, 2000. 359(1): p. 55-60.
21. Yang, S. and M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Applied Physics Letters, 2008. 93(4): p. 043111.
22. Gopakumar, T.G., et al., Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 2002. 43(20): p. 5483-5491.
23. Peracchia, M.T., et al., Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sciences, 1997. 61(7): p. 749-761.
24. Feng, J. and C.-M. Chan, Carbon black–filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: Electrical properties and morphology. Polymer Engineering & Science, 1998. 38(10): p. 1649-1657.
25. Damm, C., M. Neumann, and H. Münstedt, Properties of Nanosilver Coatings on Polymethyl Methacrylate. Soft Materials, 2005. 3(2-3): p. 71-88.
26. Zheng, W. and S.-C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 2003. 63(2): p. 225-235.
27. Shin, H., et al., Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer, 2013. 54(5): p. 1543-1554.
28. Odegard, G.M., T.C. Clancy, and T.S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 2005. 46(2): p. 553-562.
29. Kutvonen, A., et al., Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. The Journal of Chemical Physics, 2012. 137(21): p. 214901.
30. Yang, S., J. Choi, and M. Cho, Elastic Stiffness and Filler Size Effect of Covalently Grafted Nanosilica Polyimide Composites: Molecular Dynamics Study. ACS Applied Materials & Interfaces, 2012. 4(9): p. 4792-4799.
31. Choi, J., et al., The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach. Composite Structures, 2015. 119: p. 365-376.
32. Sane, S.B., et al., Molecular dynamics simulations to compute the bulk response of amorphous PMMA. Journal of Computer-Aided Materials Design, 2001. 8(2): p. 87-106.
33. Fritzsche, W., et al., In-situ formation of Ag-containing nanoparticles in thin polymer films. Nanostructured Materials, 1998. 10(1): p. 89-97.
34. Li, J., et al., Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles. Chemistry of Materials, 2008. 20(20): p. 6304-6306.
35. Lee, H.J., S.Y. Yeo, and S.H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of Materials Science, 2003. 38(10): p. 2199-2204.
36. Kim, J.S., et al., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 95-101.
37. Tran, Q.H. and A.-T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013. 4(3): p. 033001.
38. Mulfinger, L., et al., Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 2007. 84(2): p. 322.
39. Morsy, M.A. and M.A. Aldaous, Mechanical properties evaluation of new AuNP-PMMA composite. International review of chemical engineering, 2013. 5(1).
40. Lee, G.-W., et al., Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A: Applied Science and Manufacturing, 2006. 37(5): p. 727-734.
41. Kong, H. and J. Jang, Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 2008. 24(5): p. 2051-2056.
42. Siddiqui, N., et al., Effect of silver loading on optical and antibacterial behavior of Poly (methyl methacrylate). Oriental Journal of Chemistry, 2014. 30(4): p. 1777-1783.
43. Wang, D., et al., A Comparison of Various Methods for the Preparation of Polystyrene and Poly(methyl methacrylate) Clay Nanocomposites. Chemistry of Materials, 2002. 14(9): p. 3837-3843.
44. Hamedi-Rad, F., et al., Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures. Journal of Dentistry of Tehran University of Medical Sciences, 2014. 11(5): p. 495-505.
45. Kane-Maguire, L.A.P., et al., Proceedings of the International Conference on Science and Technology of Synthetic MetalsElectrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA. Synthetic Metals, 2005. 152(1): p. 349-352.
46. Jia, Z., et al., Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering: A, 1999. 271(1–2): p. 395-400.
47. Guo, Z., et al., Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. Journal of Materials Chemistry, 2006. 16(27): p. 2800-2808.
48. Park, J.H. and S.C. Jana, The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer, 2003. 44(7): p. 2091-2100.
49. Andersson, R.L., et al., Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope. Scientific reports, 2014. 4.
50. Vallés, C., et al., Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites. Composites Science and Technology, 2013. 88: p. 158-164.
51. Sodagar, A., et al., Effect of silver nano particles on flexural strength of acrylic resins. Journal of Prosthodontic Research, 2012. 56(2): p. 120-124.
52. Fan, J., et al., Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale, 2012. 4(22): p. 7046-7055.
53. Han, Y. and J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science, 2007. 39(2): p. 315-323.
54. Xue, Q., et al., Glass transition temperature of functionalized graphene–polymer composites. Computational Materials Science, 2013. 71: p. 66-71.
55. Mishra, S. and S. Keten, Atomistic simulation based prediction of the solvent effect on the molecular mobility and glass transition of poly (methyl methacrylate). Applied Physics Letters, 2013. 102(4): p. 041903.
56. Arash, B., H.S. Park, and T. Rabczuk, Tensile fracture behavior of short carbon nanotube reinforced polymer composites: A coarse-grained model. Composite Structures, 2015. 134: p. 981-988.
57. Rissanou, A.N. and V. Harmandaris, Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations. Journal of Nanoparticle Research, 2013. 15(5): p. 1-14.
58. Irving, J.H. and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. The Journal of Chemical Physics, 1950. 18(6): p. 817-829.
59. Sun, H., Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. Journal of Computational Chemistry, 1994. 15(7): p. 752-768.
60. Heinz, H., et al., Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials. The Journal of Physical Chemistry C, 2008. 112(44): p. 17281-17290.
61. Rosato, V., M. Guillope, and B. Legrand, Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philosophical Magazine A, 1989. 59(2): p. 321-336.
62. Karolewski, M.A., Tight-binding potentials for sputtering simulations with fcc and bcc metals. Radiation Effects and Defects in Solids, 2001. 153(3): p. 239-255.
63. MacKerell, A.D., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. The Journal of Physical Chemistry B, 1998. 102(18): p. 3586-3616.
64. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985. 31(3): p. 1695-1697.
65. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.
66. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
67. Frenkel, D. and B. Smit, Understanding Molecular Simulation Academic Press. San Diego, 1996.
68. Wu, C., pH response of conformation of poly(propylene imine) dendrimer in water: a molecular simulation study. Molecular Simulation, 2010. 36(14): p. 1164-1172.
69. Stukowski, A., Computational Analysis Methods in Atomistic Modeling of Crystals. JOM, 2014. 66(3): p. 399-407.
70. Shimizu, F., S. Ogata, and J. Li, Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. MATERIALS TRANSACTIONS, 2007. 48(11): p. 2923-2927.
71. Chandra, N., S. Namilae, and C. Shet, Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 2004. 69(9): p. 094101.
72. Lin, J.-S., S.-P. Ju, and W.-J. Lee, Mechanical behavior of gold nanowires with a multishell helical structure. Physical Review B, 2005. 72(8): p. 085448.
73. van Oss, C.J. and R.J. Good, Surface Tension and the Solubility of Polymers and Biopolymers: The Role of Polar and Apolar Interfacial Free Energies. Journal of Macromolecular Science: Part A - Chemistry, 1989. 26(8): p. 1183-1203.
74. Aalaie, J., et al., On the Effect of Nanosilver Reinforcement on the Mechanical, Physical, and Antimicrobial Properties of Polyethylene Blown Films. Journal of Macromolecular Science, Part B, 2011. 50(10): p. 1873-1881.
75. Nishi, T. and T.T. Wang, Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures. Macromolecules, 1975. 8(6): p. 909-915.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code