Responsive image
博碩士論文 etd-0729116-164844 詳細資訊
Title page for etd-0729116-164844
論文名稱
Title
益生菌降低沙門氏菌感染所引起的發炎反應
Suppressive Effects of Probiotics on Salmonella Induced Inflammation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-17
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
沙門氏菌、發炎、乳酸菌、益生菌、降發炎、細胞內病原體、促發炎細胞因子
Salmonella, pro-inflammatory cytokine, inflammation, Lactobacillus, Probiotics, anti-inflammatory, intra-cellular pathogen
統計
Statistics
本論文已被瀏覽 5709 次,被下載 29
The thesis/dissertation has been browsed 5709 times, has been downloaded 29 times.
中文摘要
人類被沙門氏菌感染的表現徵狀通常是產生腹瀉的小腸結腸炎,伴隨著腸道表皮細胞被刺激分泌促炎性細胞因子 (pro-inflammatory cytokine),同時會有嗜中性粒細胞滲透入腸粘膜下層的現象, 是為腸道發炎的特徵。將嗜中性粒細胞從循環系統招集到皮膜下區域是由像白細胞介素-8 (Interleukin-8, IL-8) 之類的細胞趨化因子所驅動的,而IL-8是已知在表皮細胞被細菌侵入時會被大量誘發的因子。
益生菌能被用以預防或治癒某些形式的炎性腸病 (Inflammatory Bowel Disease, IBD)。某些乳桿菌屬中的菌種能成功的達成調節促發炎性細胞因子的細胞訊息傳遞,進而發揮在腸胃道裡降發炎的作用。
在這項研究中, 我們使用人類腸道細胞株HCT 116來模擬腸道表皮細胞,並用人類白血病化單核球細胞株THP-1來模擬血球細胞系統 , 用以探討四株乳桿菌屬的益生菌對於被沙門氏菌感染而引起發炎的細胞施加的效果。這項研究所用以感染細胞的沙門氏菌是野生型SL1344,為了使其盡量呈現具有侵入細胞的能力的表型而將其在無氧條件下培養到成長(指數)期晚期。我們所使用的四株益生菌分別為嗜酸乳酸菌(Lactobacillus acidophilus)、鼠李糖乳桿菌(Lactobacillus rhamnosus)、副乾酪乳桿菌 (Lactobacillus paracasei)、德氏乳桿菌(Lactobacillus delbrueckii)。
結果顯示四株益生菌皆能對所測試的三個發炎相關細胞因子之mRNA表現量發揮到某程度調節降低的作用,但是效果是偶發而不一致的。唯獨副乾酪乳桿菌(Lactobacillus paracasei)這一株能反覆並可靠地抑制IL-8之mRNA表現。 我們的實驗結果透過感染測試顯示了腸道表皮細胞被沙門氏菌感染時最劇烈的反應是IL-8表現量的調升,顯示了細胞被細菌感染而發炎可能與細胞中IL-8表現的上調有關聯。 但是, 在侵入細胞的細菌數定量結果顯示副乾酪乳桿菌並未明顯減少細胞內的細菌數, 反而是鼠李糖乳桿菌 (Lactobacillus rhamnosus)這一株益生菌達到了顯著減少細胞被細菌侵入的效果。這些發現顯示了不同種類的益生菌或許透過不同的機制發揮降發炎的作用,以及鼠李糖乳桿菌似乎能保護腸道表皮細胞使之較不易被沙門氏菌侵入。
Abstract
Salmonella infection in humans is commonly manifested as enterocolitis characterized by induction of epithelial secretion of pro-inflammatory cytokines and diarrhea, accompanied by infiltration of neutrophils in the intestinal submucosa, which is a hall-mark of intestinal inflammation. The recruitment of neutrophils from circulation to the subepithelial region is facilitated by chemokines such as interleukin-8 (IL-8), which is known to be significantly induced upon bacterial entry by host epithelial cells.
Probiotics are able to be used in the prevention or treatment of certain types of in-flammatory bowel disease (IBD). Certain types of Lactobacillus strains are successful in modulating pro-inflammatory cytokine signaling, which in turn, reduce inflammation in the gastrointestinal tract.
In this study, we used the human intestinal cell line HCT 116 as an intestinal epithelial model, and the human leukemic monocyte cell line THP-1 as a leukocyte model, to determine the effects of four arbitrarily chosen strains of Lactobacillus probiotics on inflammation caused by Salmonella infection. The Salmonella strain used in the study is the wild-type SL1344, grown under anaerobic conditions to late log phase to maximize invasion phenotype. The four probiotic strains are Lactobacillus acidophilus, Lactoba-cillus rhamnosus, Lactobacillus paracasei, and Lactobacillus delbrueckii.
Our results show that all four strains of probiotics were able to sporadically reduce mRNA expression of the three tested cytokines, but only Lactobacillus paracasei was able to consistently lower IL-8 expression. Our experimental results had shown in infection tests that upon Salmonella infection, the most acute response is seen in the upregu-lation of IL-8 expression, suggesting a possible relation between inflammation induced by bacterial infection and IL-8 induction. However, invasion assays show that Lactoba-cillus paracasei did not significantly reduce the amount of intracellular bacteria. In-stead, only Lactobacillus rhamnosus, which did not consistently suppress IL-8, signifi-cantly reduced bacterial invasion. These findings suggest that various probiotics sup-press inflammation through different mechanisms, and that the probiotic Lactobacillus rhamnosus is able to protect intestinal epithelial cells by rendering them less suscepti-ble to Salmonella invasion.
目次 Table of Contents
論文審定書…………………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要……………………………………………………………… iii
英文摘要 (Abstract)………………………………………………… v
圖次 (Figures)……………………………………………………… iix
縮寫與符號說明 (Abbreviations & Notations)……………………… ix
緒論 (Introduction)…………………………………………………… 10
Materials & Methods………………………………………………… 16
結果 (Results)………………………………………………………… 21
討論 (Discussion)…………………………………………………… 24
參考文獻 (References)……………………………………………… 45
附錄(Appendix)……………………………………………………… 53
參考文獻 References
1. Jantsch J, Chikkaballi D, Hensel M, Cellular aspects of immunity to intracellular Salmonella enterica, Immunol Rev. 2011 Mar;240(1):185-95. doi: 10.1111/j.1600-065X.2010.00981.x.
2. Renato L. Santos, Shuping Zhang, Renée M. Tsolis, Robert A. Kingsley, L. Garry Adams, Andreas J. Bäumler, Animal models of Salmonella infections:enteritis ver-sus typhoid fever, Microbes and Infection, 3, 2001, 1335−1344
3. Bryan Coburn, Guntram A Grass and BB Finlay, Salmonella, the host and disease: a brief review, Immunology and Cell Biology (2007) 85, 112–118
4. John C. Christenson, Salmonella Infections, Pediatrics in Review September 2013, VOLUME 34 / ISSUE 9
5. Alfred P. Ingegno, M.D.; John B. D'Albora, M.D.; John N. Edson, M.D.; Peter J. Gianquinto, M.D, PNEUMONIA ASSOCIATED WITH ACUTE SALMONEL-LOSIS, Arch Intern Med (Chic). 1948;81(4):476-484
6. P. Velge, A. Wiedemann, I. Virlogeux-Payant et al, Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis, Microbiolo-gyOpen. 2012 Sep;1(3):243-58
7. Kim Thien Ly, James E. Casanova, Mechanisms of Salmonella Entry into host cells (Microreview), Cellular Microbiology (2007) 9(9), 2103-2111
8. Athina G. Portaliou, Konstantinos C. Tsolis, Maria S. Loos, Valentina Zorzini, An-astassios Economou, Type III Secretion: Building and Operating a Remarkable Na-nomachine, Trends in Biochemical Sciences, February 2016, Vol. 41, No. 2 (Cell Press)
9. Chantal G. Forest, Elyse Ferraro, Sebastien C. Sabbagh and France Daigle, Intra-cellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2, Microbiology (2010), 156, 3689–3698
10. Manon Rosselin, Nadia Abed, Isabelle Virlogeux-Payant, Elisabeth Bottreau, Pierre-Yves Sizaret, Philippe Velge and Agnes Wiedemann, Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmo-nella Enteritidis to invade different cell types, Microbiology (2011), 157, 839–847
11. Kamila Kyrova, Hana Stepanova, Ivan Rychlik, Martin Faldyna and Jiri Volf, SPI-1 encoded genes of Salmonella Typhimurium influence differential polariza-tion of porcine alveolar macrophages in vitro, BMC Veterinary Re-search20128:115 DOI: 10.1186/1746-6148-8-115
12. Matthias Bruewer, Andreas Luegering, Torsten Kucharzik, Charles A. Parkos, James L. Madara, Ann M. Hopkins and Asma Nusrat, Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms, jimmunol.171.11.6164 The Journal of Immunology December 1, 2003
13. Anastasia Mashukova, Flavia A. Wald, and Pedro J. Salas, Tumor Necrosis Factor Alpha and Inflammation Disrupt the Polarity Complex in Intestinal Epithelial Cells by a Posttranslational Mechanism, MOLECULAR AND CELLULAR BIOLOGY, Feb. 2011, p. 756–765
14. I. Hautefort, A. Thompson, S. Eriksson-Ygberg, M.L. Parker, S. Lucchini, V. Da-nino, R.J.M. Bongaerts, N. Ahmad, M. Rhen, J.C.D. Hinton, During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems, Cellular Microbiology (2008) 10(4), 958–984 doi:10.1111/j.1462-5822.2007.01099.x
15. Tonyia Eaves-Pyles, Kanneganti Murthy, Lucas Liaudet, La´szlo´ Vira´g, Gary Ross, Francisco Garcia Soriano, Csaba Szabo´, Andrew L. Salzman, Flagellin, a Novel Mediator of Salmonella-Induced Epithelial Activation and Systemic In-flammation: IkBa Degradation, Induction of Nitric Oxide Synthase, Induction of Proinflammatory Mediators, and Cardiovascular Dysfunction, J Immunol 2001; 166:1248-1260 doi: 10.4049/jimmunol.166.2.1248
16. Fu-Chen Huang, Adam Werne, Qian Li, Edouard E. Galyov, W. Allan Walker, and Bobby J. Cherayil, Cooperative Interactions between Flagellin and SopE2 in the Epithelial Interleukin-8 Response to Salmonella enterica Serovar Typhimuri-um Infection, Infection and Immunity, Sept. 2004, Vol. 72, No. 9 p.5052–5062 DOI: 10.1128/IAI.72.9.5052–5062.2004
17. Tonyia Eaves-Pyles1, Heng-Fu Bu, Xiao-di Tan, Yingzi Cong, Jignesh Patel1, Robert A. Davey, Jane E. Strasser, Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism, PLoS ONE 6(9): e24869. September 2011 Vol-ume 6 Issue 9 DOI:10.1371/journal.pone.0024869
18. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R, Ino-hara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Núñez G, Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1 β in Salmonella-infected macrophages, Nat Immunol. 2006 Jun;7(6):576-82
19. Jorge E. Galan, Christine Ginocchio, Paul Costeas, Molecular and Functional Characterization of the Salmonella Invasion Gene invA: Homology of InvA to Members of a New Protein Family, Journal of Bacteriology, July 1992, Vol. 174, No.13 p. 4338-4349
20. M. Ann Clark, Barry H. Hirst, Mark A. Jepson, Inoculum Composition and Salmo-nella Pathogenicity Island 1 Regulate M-Cell Invasion and Epithelial Destruc-tion by Salmonella typhimurium, Infect Immun. 1998 Feb; 66(2): 724–731
21. Kristi L. Penheiter, Nitin Mathur, Dobie Giles, Thomas Fahlen, Bradley D. Jones, Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches, Molecular Mi-crobiology (1997) 24(4), 697-709
22. Julian Davies and Dorothy Davies, Origins and Evolution of Antibiotic Re-sistance, Microbiol. Mol. Biol. Rev. September 2010 vol. 74 no. 3 417-433
23. Yi-Yun Liu, BS, Yang Wang, PhD, Prof Jianzhong Shen, PhD, et al, Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study, The Lancet Infectious Diseases Volume 16, No. 2, p161–168, February 2016
24. E. Yoko Furuya & Franklin D. Lowy, Antimicrobial-resistant bacteria in the community setting, Nature Reviews Microbiology 4, 36-45 (January 2006)
25. Jessica M. A. Blair, Mark A. Webber, Alison J. Baylay, David O. Ogbolu & Laura J. V. Piddock, Molecular mechanisms of antibiotic resistance, Nature Re-views Microbiology 13, 42–51 (2015)
26. Richard J. Fair and Yitzhak Tor, Antibiotics and Bacterial Resistance in the 21st Century, Perspectives in Medicinal Chemistry 2014:6
27. Hiroshi Nikaido, Multidrug Resistance in Bacteria, Annu Rev Biochem. 2009; 78: 119–146
28. Nordmann P, Poirel L, Toleman MA, Walsh TA, Does Broad-spectrum Beta-lactam Resistance due to NDM-1 Herald the End of the Antibiotic Era for Treatment of Infections Caused by Gram-negative Bacteria? , J Antimicrob Chemother. 2011;66(4):689–92
29. Miriam Bermudez-Brito, Julio Plaza-Díaz, Sergio Muñoz-Quezada, Carolina Gómez-Llorente, Angel Gil, Probiotic Mechanisms of Action, Ann Nutr Metab 2012;61:160–174
30. Mehdi Goudarzi, Hossein Goudarzi, Marjan Rashidan, Probiotics: an update on mechanisms of action and clinical applications, Novelty in Biomedicine 2014, 2, 22-30
31. Sarah Lebeer, Jos Vanderleyden, and Sigrid C. J. De Keersmaecker, Genes and Molecules of Lactobacilli Supporting Probiotic Action, Microbiology and Mo-lecular Biology Reviews, Vol. 72, No. 4 p728–764 Dec 2008
32. Gregor Reid, Probiotics to Prevent the Need For, and Augment the Use Of, Antibi-otics, Can J Infect Dis Med Microbiol. 2006 Sep-Oct; 17(5): 291–295
33. Sandra Tejero-Sariñena, Janine Barlow, Adele Costabile, Glenn R. Gibson, Ian Rowland, Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to syn-ergies in probiotic mixtures or the specificity of single strains?, Anaerobe 24 (2013) 60-65 http://dx.doi.org/10.1016/j.anaerobe.2013.09.011
34. Jugal Kishore Das, Debasmita Mishra, Pratikshya Ray, Prangya Tripathy, Tushar K Beuria, Neera Singh and Mrutyunjay Suar, In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis, Gut Pathogens 2013, 5:11
35. Meng-Tsung Tien, Stephen E. Girardin, Be´atrice Regnault, Lionel Le Bourhis, Marie-Agne`s Dillies, Jean-Yves Coppe´e, Raphae¨lle Bourdet-Sicard, Philippe J. Sansonetti, and Thierry Pe´dron, Anti-Inflammatory Effect of Lactobacillus ca-sei on Shigella-Infected Human Intestinal Epithelial Cells, The Journal of Im-munology, 2006, 176: 1228–1237
36. Vijaya K Gogineni, Lee E Morrow and Mark A Malesker, Probiotics: Mechanisms of Action and Clinical Applications, J Prob Health 2013, 1:1 http://dx.doi.org/10.4172/jph.1000101
37. Sonia S. Yoon and Jun Sun, Probiotics, Nuclear Receptor Signaling, and Anti-
Inflammatory Pathways, Gastroenterology Research and Practice Volume 2011, doi:10.1155/2011/971938
38. Marie-Anne von Schillde, Gabriele Ho¨ rmannsperger, Monika Weiher, Carl-Alfred Alpert, Hannes Hahne, Christine Ba¨ uerl, Karolien van Huynegem, Lothar Steidler, Tomas Hrncir, Gaspar Pe´rez-Martı´nez, Bernhard Kuster, and Dirk Hal-ler, Lactocepin Secreted By Lactobacillus Exerts Anti-Inflammatory Effects By Selectively Degrading Proinflammatory Chemokines, Cell Host & Microbe 11, 387–396, April 19, 2012 DOI 10.1016/j.chom.2012.02.006
39. Kazuyuki Tanaka, Mikihiro Fujiya, Hiroaki Konishi, Nobuhiro Ueno, Shin Kashima, Junpei Sasajima, Kentaro Moriichi, Katsuya Ikuta, Hiroki Tanabe, Yutaka Kohgo, Probiotic-derived polyphosphate improves the intestinal barrier function through the caveolin-dependent endocytic pathway, Biochemical and Biophysical Research Communications 467 (2015) 541-548
40. Bäuerl C, Pérez-Martínez G, Yan F, Polk DB, Monedero V, Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23, J Mol Microbiol Bio-technol. 2010;19(4):231-41
41. Yan F, Polk DB, Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on in-testinal inflammatory diseases, Gut Microbes. 2012 Jan-Feb;3(1):25-8
42. Catherine A. Lee and Stanley Falkow, The ability of Salmonella to enter mammali-an cells is affected by bacterial growth state, Proc. Natl. Acad. Sci. USA Vol. 87, pp. 4304-4308, June 1990 Microbiology
43. Daniel Becker, Matthias Selbach, Claudia Rollenhagen, Matthias Ballmaier, Thomas F. Meyer, Matthias Mann and Dirk Bumann, Robust Salmonella metabo-lism limits possibilities for new antimicrobials, Nature Volume 440 Number 7082 pp255-382 16 March 2006 doi:10.1038/nature04616
44. Johannes G. Kusters, Geraldina A.W.M. Mulders-Kremers, Claudia E.M. van Doornik, and Bernard A.M.van der Zeijst, Effects of Multiplicity of Infection, Bac-terial Protein Synthesis, and Growth Phase on Adhesion to and Invasion of Human Cell Lines by Salmonella typhimurium, INFECTION AND IMMUNI-TY, Dec. 1993, Vol.61 NO.12 p.5013-5020
45. K. L. Mattick, F. Jørgensen, P. Wang, J. Pound, M. H. Vandeven, L. R. Ward, J. D. Legan, H. M. Lappin-Scott, and T. J. Humphrey, Effect of Challenge Temperature and Solute Type on Heat Tolerance of Salmonella Serovars at Low Water Ac-tivity, APPLIED AND ENVIRONMENTAL MICROBIOLOGY Vol. 67, No. 9 Sept. 2001, p. 4128–4136 DOI: 10.1128/AEM.67.9.4128–4136.2001
46. Henry Ng, Henry G. Bayne, and John A. Garibaldi, Heat Resistance of Salmonella: the Uniqueness of Salmonella senftenberg 775W, Appl Microbiol. 1969 Jan; 17(1): 78–82.
47. Robert Angelotti, Milton J. Foter, Keith H. Lewis, Time-Temperature Effects on Salmonellae and Staphylococci in Foods, Appl Microbiol. 1961 Jul; 9(4): 308–315
48. Ling Zhao,Myung-Ja Kwon, Shurong Huang, Joo Y. Lee, Koichi Fukase, Naohiro Inohara,and Daniel H. Hwang, Differential Modulation of Nods Signaling Path-ways by Fatty Acids in Human Colonic Epithelial HCT116 Cells, THE JOUR-NAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 16, pp. 11618–11628, April 20, 2007
49. L Eckmann, M F Kagnoff and J Fierer, Epithelial cells secrete the chemokine inter-leukin-8 in response to bacterial entry, Infect. Immun. November 1993 vol. 61 no.11 4569-4574
50. Tallant T, Deb A, Kar N, Lupica J, de Veer MJ, DiDonato JA, Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B
and proinflammatory gene program activation in intestinal epithelial cells, BMC Microbiol. 2004 Aug 23;4:33
51. Dane Parker and Alice Prince, Epithelial Uptake of Flagella Initiates Proinflamma-tory Signaling, PLoS One March 2013 | Volume 8 | Issue 3 | e59932
52. Sandeepa M. Eswarappa, Vidya Devi Negi, Sangeeta Chakraborty, B. K. Chandra-sekhar Sagar, and Dipshikha Chakravortty, Division of the Salmonella-Containing Vacuole and Depletion of Acidic Lysosomes in Salmonella-Infected Host Cells Are Novel Strategies of Salmonella enterica To Avoid Lysosomes, Infect Im-mun. 2010 Jan; 78(1): 68–79
53. M. Karlsson and J. Jass, Lactobacilli differently regulate expression and secretion of CXCL8 in urothelial cells, Beneficial Microbes, September 2012; 3(3): 195-203
54. Yezaz A Ghouri, David M Richards, Erik F Rahimi, Joseph T Krill, Katherine A Jelinek, Andrew W DuPont, Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clinical and Experimental Gastroenterology 2014:7 473–487
55. E Furrie, S Macfarlane, A Kennedy, J H Cummings, S V Walsh, D A O’Neil, G T Macfarlane, Synbiotic therapy (Bifidobacterium longum/Synergy 1)initiates reso-lution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial, Gut 2005;54:242–249. doi: 10.1136/gut.2004.044834
56. D.W. Day, B.K. Mandal, B.C. Morson, The rectal biopsy appearances in Salmo-nella colitis, Histopathology 2 (1978) 117–131
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code