Responsive image
博碩士論文 etd-0729116-194854 詳細資訊
Title page for etd-0729116-194854
論文名稱
Title
探討嚴重敗血症患者的血液中相關的生物標記在疾病死亡率與器官衰竭的角色
Predictive value of Inflammatory Biomarkers in Severe Sepsis related Organ Failure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
198
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
血管內皮前驅細胞、細胞黏著因子、嚴重敗血症、急性腎衰竭、敗血性腦病變、呼吸衰竭、細胞凋亡
Respiratory failure, Endothelium Progenitor Cells, Cell Adhesion Molecules, Apoptosis, Septic Encephalopathy, Severe Sepsis, Septic Acute Kidney Injury
統計
Statistics
本論文已被瀏覽 5829 次,被下載 110
The thesis/dissertation has been browsed 5829 times, has been downloaded 110 times.
中文摘要
前言:即使是在現代醫療,嚴重敗血症或敗血性休克病患的治療仍然是重症照護很大的挑戰,在加護病房的死亡率在不同的報告可達30-60%,其中器官功能的衰竭的出現與病患的死亡率有明顯的關係。但我們對於敗血症引發各種器官功能衰竭的機轉仍不是很了解,同樣的預測各種器官衰竭的發生及預後在臨床上是很困難的。在臨床重症的病患中發現白血球與血管內皮細胞的交互作用在疾病的進程與器官功能衰竭與否扮演關鍵角色。活化的白血球釋放出發炎反應因子,會導致血管內皮的細胞黏著因子表現量上升,進而造成遠端器官的傷害。而白血球細胞發生凋亡,與全身免疫反應的調節中扮演重要的角色。血管內皮前驅細胞與血管內皮細胞新生與修復有關,因此血管內皮前驅細胞數量應能代表嚴重敗血症的嚴重程度。
方法:我們假設1) 上述的生物標記在嚴重敗血症的病患中能夠用於預測疾病的嚴重度及做為臨床治療的指標; 2) 這些體內血液中生物標記的變化與肺、腎臟、腦功能的衰竭存在著相關性。3) 敗血症所致的器官功能衰竭可能後續造成長期性的病變。我們藉由規則性的測定嚴重敗血症病患的血中生物標記及器官衰竭的標記來評估其結果。
結果:研究結果顯示,嚴重敗血症患者不同的白血球其細胞凋亡比例其與疾病嚴重度有,血液不同程度的相關性。血管內皮前驅細胞的比例也與高死亡率有關,而血液中的不同的細胞黏著因子也與敗血症引發的器官衰竭有顯著的關係。
討論:這一系列的研究證實了敗血症的嚴重度與白血球與血管內皮間的交互作用有著明顯的相關性,未來臨床上可用於預測疾病的嚴重度及發展治療策略的重要指標。
Abstract
Introduction: Severe sepsis and septic shock remain a great challenge in intensive care despite improvements in modern treatment. It stands the major cause of death in patients admitted to the emergency department (ED) and intensive care units (ICU), with a mortality rate varying between 30% and 60% in different reports. But we still did not well known about the mechanism of sepsis and it is very difficult to predict the incidence and outcome of sepsis and sepsis induced organ failure. The inflammatory cytokines and cell adhesion molecules liberated from activated leukocytes and endothelial cells promote further organ damages. Apoptosis is a complex process and white blood cells apoptosis is believed critical relate to inflammation and secondary tissue injury. Circulating endothelial progenitors cells (EPCs) believed critical to negatively correlate to outcome of patients with sepsis since it represent the severity of endothelium injury.
Method: We hypothesize that significantly increased these inflammatory biomarkers, increase leukocyte apoptosis and endothelium progenitor cells in severe sepsis patients would relate to higher mortality rate and connect to specific organ dysfunction. We also speculate that these biomarkers could help in the clinical treatment and severity prediction. We conducted these studies by series checking the serum biomarkers of inflammation and record about their organ dysfunction and try to find their correlation.
Results: The result of these studies showed lymphocyte and monocyte apoptosis, endothelium progenitor cells is significantly higher in severe sepsis patients. Cell adhesion molecules are associated with various organ failures in severe sepsis patients.
Discussion: These series studies revealed that leukocyte and endothelium interaction play an important role on the progression of sepsis. In the future, this will be an important issue on the prediction of disease severity and treatment of sepsis induced organ failure.
目次 Table of Contents
目 錄
論文審定書………………………………………………..……………….i
論文公開授權書………………………………………..……………….ii
誌謝…………………………………………………………….………..iii
中文摘要…………………………………………………………….….…iv
英文摘要………………………………………..………….……...…….…v
目錄…………………………………………………..........………………vi
圖次…………………………………………………...…………………ix
表次…………………………………………………….…………….….…x
前言 內容簡介Introduction…………………………...……………….1
核心推論 Central hypothesis………………………………….…………12
第一章 研究對象和實驗方法Patients, methodology and statistics......13 1.1-Baseline characteristics of the study patients………………...…...14
1.2-Methods and Materials……………………………………………17
第 二 章 循環中的內皮前驅細胞可以預測嚴重敗血症病患的預後Circulating endothelial progenitor cells may predict outcome in severe sepsis……………………………………………………………………...25
2.1-Circulating endothelial progenitor cells and sepsis ……….........26
2.2-Material and methods…………….………………..………..........28
2.3-Result………………………………..…………..………………29
2.4-Discussion……………………………………………………….37
2.5-Conculsion….………………..…………………………………41
第 三 章 在急診嚴重敗血症患者以白血球細胞凋亡來預測疾病嚴重度The prognostic value of leukocyte apoptosis in patients with severe sepsis at the emergency department……………………………...…….42
3.1-leukocyte apoptosis and sepsis ……………………………..……43
3.2-Material and methods……….……………………..………..........45
3.3-Result………………………………………………………….…463.4-Discussion………………..……………………………………58
3.5-Conclusion………………..…………………………………63
第 四 章 探討細胞黏著因子和嚴重敗血症患者發生敗血性腦病變的相關性The cell adhesion molecule is associated with septic encephalopathy in severe sepsis patients……………………….………64
4.1-Septic encephalopathy mechanism and related biomarkers……65
4.2-Material and methods……….……………………..………..........68
4.3-Result……………………………………………………………69
4.4-Discussion………………….……………………………….…79
4.5-Conclusion...………………….……………………………….…81
第 五 章 血清中的細胞黏著因子與敗血症誘發的急性腎衰竭的相關性 The value of serial serum cell adhesion molecules in predicting acute kidney injury after severe sepsis …………………...……………82
5.1-Septic kidney injury mechanism and related biomarkers………83
5.2-Material and methods……….……………………..………..........86
5.3-Result…………………………………………………………….88
5.4-Discussion…………………………………………………..…100
5.5-Conclusion...………………….……………………………….104
第 六 章 細胞黏著因子和嚴重敗血症患者發生呼吸衰竭的預後之相關性Serum adhesion molecules as outcome predictors in adult severe sepsis patients requiring mechanical ventilation ………………….…105
6.1-Sepsis induced respiratory failure and related biomarkers……106
6.2-Material and methods……….……………………..………........108
6.3-Result…………………………………………………………108
6.4-Discussion………………………………………………………117
6.5-Conculsion……………………………………………………121
第 七 章 討論 Discussion……………………………………….…....122
第 八 章研究之限制和未來研究方向 Limitation of current study and future research….……………………………………………...……….130
8.1- Limitation of current study……………..………………………131
8.2- Future research………………………...……………………….134
參考文獻 Reference…………..………………………………….……136
附錄…………………………………………………..………………….151
附錄1--英文縮寫全文……………………...…………………………..152
附錄2--Circulating endothelial progenitor cells may predict outcomes in adult patients with severe sepsis in the emergency department….………..
附錄3--The prognostic value of leukocyte apoptosis in patients with severe sepsis at the emergency department…………………………………………
附錄4-- Serum Adhesion Molecules as Outcome Predictors in Adult Severe Sepsis Patients Requiring Mechanical Ventilation in the Emergency Department……………………………………………..…………..……….
附錄5-- Elevated serum vascular cell adhesion molecule-1 is associated with septic encephalopathy in adult community-onset severe sepsis patients…………...…………………………………………..……………..
附錄6-- The value of serial serum cell adhesion molecules in predicting acute kidney injury after severe sepsis in adults ……………………………
參考文獻 References
References:
1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. The New England journal of medicine 2003;348:1546-1554.
2. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 2016;315:801-810.
3. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Critical care 2010;14:R15.
4. Guo RF, Sun L, Gao H, et al. In vivo regulation of neutrophil apoptosis by C5a during sepsis. Journal of leukocyte biology 2006;80:1575-1583.
5. Liang J, Yao G, Yang L, Hou Y. Dehydroepiandrosterone induces apoptosis of thymocyte through Fas/Fas-L pathway. International immunopharmacology 2004;4:1467-1475.
6. Ayala A, Herdon CD, Lehman DL, DeMaso CM, Ayala CA, Chaudry IH. The induction of accelerated thymic programmed cell death during polymicrobial sepsis: control by corticosteroids but not tumor necrosis factor. Shock 1995;3:259-267.
7. Guo RF, Huber-Lang M, Wang X, et al. Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. The Journal of clinical investigation 2000;106:1271-1280.
8. Davies NW, Sharief MK, Howard RS. Infection-associated encephalopathies: their investigation, diagnosis, and treatment. Journal of neurology 2006;253:833-845.
9. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive care medicine 2007;33:941-950.
10. Sands KE, Bates DW, Lanken PN, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. Jama 1997;278:234-240.
11. Consales G, De Gaudio AR. Sepsis associated encephalopathy. Minerva anestesiologica 2005;71:39-52.
12. Streck EL, Comim CM, Barichello T, Quevedo J. The septic brain. Neurochemical research 2008;33:2171-2177.
13. Schrier RW, Wang W. Acute renal failure and sepsis. The New England journal of medicine 2004;351:159-169.
14. Kim WY, Huh JW, Lim CM, Koh Y, Hong SB. Analysis of progression in risk, injury, failure, loss, and end-stage renal disease classification on outcome in patients with severe sepsis and septic shock. Journal of critical care 2012;27:104 e101-107.
15. Marino R, Struck J, Hartmann O, et al. Diagnostic and short-term prognostic utility of plasma pro-enkephalin (pro-ENK) for acute kidney injury in patients admitted with sepsis in the emergency department. Journal of nephrology 2015;28:717-724.
16. Medeiros P, Nga HS, Menezes P, Bridi R, Balbi A, Ponce D. Acute kidney injury in septic patients admitted to emergency clinical room: risk factors and outcome. Clinical and experimental nephrology 2015;19:859-866.
17. Suh SH, Kim CS, Choi JS, Bae EH, Ma SK, Kim SW. Acute kidney injury in patients with sepsis and septic shock: risk factors and clinical outcomes. Yonsei medical journal 2013;54:965-972.
18. Alseiari M, Meyer KB, Wong JB. Evidence Underlying KDIGO (Kidney Disease: Improving Global Outcomes) Guideline Recommendations: A Systematic Review. American journal of kidney diseases : the official journal of the National Kidney Foundation 2016;67:417-422.
19. Doi K. Role of kidney injury in sepsis. Journal of intensive care 2016;4:17.
20. Benz F, Roy S, Trautwein C, Roderburg C, Luedde T. Circulating MicroRNAs as Biomarkers for Sepsis. International journal of molecular sciences 2016;17.
21. Biron BM, Ayala A, Lomas-Neira JL. Biomarkers for Sepsis: What Is and What Might Be? Biomarker insights 2015;10:7-17.
22. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Critical care medicine 1985;13:818-829.
23. Russwurm S, Vickers J, Meier-Hellmann A, et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 2002;17:263-268.
24. Sugimoto K, Galle C, Preiser JC, Creteur J, Vincent JL, Pradier O. Monocyte CD40 expression in severe sepsis. Shock 2003;19:24-27.
25. Livaditi O, Kotanidou A, Psarra A, et al. Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis. Cytokine 2006;36:283-290.
26. Kurt AN, Aygun AD, Godekmerdan A, Kurt A, Dogan Y, Yilmaz E. Serum IL-1beta, IL-6, IL-8, and TNF-alpha levels in early diagnosis and management of neonatal sepsis. Mediators of inflammation 2007;2007:31397.
27. Balc IC, Sungurtekin H, Gurses E, Sungurtekin U, Kaptanoglu B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Critical care 2003;7:85-90.
28. Heper Y, Akalin EH, Mistik R, et al. Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 2006;25:481-491.
29. Marchant A, Alegre ML, Hakim A, et al. Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. Journal of clinical immunology 1995;15:266-273.
30. Bozza FA, Salluh JI, Japiassu AM, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Critical care 2007;11:R49.
31. Calandra T, Baumgartner JD, Grau GE, et al. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. The Journal of infectious diseases 1990;161:982-987.
32. Riche F, Panis Y, Laisne MJ, et al. High tumor necrosis factor serum level is associated with increased survival in patients with abdominal septic shock: a prospective study in 59 patients. Surgery 1996;120:801-807.
33. Cummings CJ, Sessler CN, Beall LD, Fisher BJ, Best AM, Fowler AA, 3rd. Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. American journal of respiratory and critical care medicine 1997;156:431-437.
34. Lopez S, Prats N, Marco AJ. Expression of E-selectin, P-selectin, and intercellular adhesion molecule-1 during experimental murine listeriosis. The American journal of pathology 1999;155:1391-1397.
35. Seidelin JB, Nielsen OH, Strom J. Soluble L-selectin levels predict survival in sepsis. Intensive care medicine 2002;28:1613-1618.
36. Whalen MJ, Doughty LA, Carlos TM, Wisniewski SR, Kochanek PM, Carcillo JA. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Critical care medicine 2000;28:2600-2607.
37. Figueras-Aloy J, Gomez-Lopez L, Rodriguez-Miguelez JM, et al. Serum soluble ICAM-1, VCAM-1, L-selectin, and P-selectin levels as markers of infection and their relation to clinical severity in neonatal sepsis. American journal of perinatology 2007;24:331-338.
38. Scherpereel A, Depontieu F, Grigoriu B, et al. Endocan, a new endothelial marker in human sepsis. Critical care medicine 2006;34:532-537.
39. Oku R, Oda S, Nakada TA, et al. Differential pattern of cell-surface and soluble TREM-1 between sepsis and SIRS. Cytokine 2013;61:112-117.
40. Jeong SJ, Song YG, Kim CO, et al. Measurement of plasma sTREM-1 in patients with severe sepsis receiving early goal-directed therapy and evaluation of its usefulness. Shock 2012;37:574-578.
41. Adly AA, Ismail EA, Andrawes NG, El-Saadany MA. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. Cytokine 2014;65:184-191.
42. Seller-Perez G, Herrera-Gutierrez ME, Lebron-Gallardo M, de Toro-Peinado I, Martin-Hita L, Porras-Ballesteros JA. [Serum C-reactive protein as a marker of outcome and infection in critical care patients]. Medicina clinica 2005;125:761-765.
43. Garcia PC, Longhi F, Branco RG, Piva JP, Lacks D, Tasker RC. Ferritin levels in children with severe sepsis and septic shock. Acta paediatrica 2007;96:1829-1831.
44. Becker KL, Snider R, Nylen ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Critical care medicine 2008;36:941-952.
45. Le Tulzo Y, Pangault C, Gacouin A, et al. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock 2002;18:487-494.
46. Fialkow L, Fochesatto Filho L, Bozzetti MC, et al. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Critical care 2006;10:R155.
47. Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, et al. Early apoptosis of blood monocytes in the septic host: is it a mechanism of protection in the event of septic shock? Critical care 2006;10:R76.
48. Kinasewitz GT, Yan SB, Basson B, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Critical care 2004;8:R82-90.
49. Heuer JG, Sharma GR, Gerlitz B, et al. Evaluation of protein C and other biomarkers as predictors of mortality in a rat cecal ligation and puncture model of sepsis. Critical care medicine 2004;32:1570-1578.
50. Lin SM, Wang YM, Lin HC, et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Critical care medicine 2008;36:683-689.
51. Mutunga M, Fulton B, Bullock R, et al. Circulating endothelial cells in patients with septic shock. American journal of respiratory and critical care medicine 2001;163:195-200.
52. Rafat N, Hanusch C, Brinkkoetter PT, et al. Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Critical care medicine 2007;35:1677-1684.
53. Post F, Weilemann LS, Messow CM, Sinning C, Munzel T. B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Critical care medicine 2008;36:3030-3037.
54. Rivers EP, McCord J, Otero R, Jacobsen G, Loomba M. Clinical utility of B-type natriuretic peptide in early severe sepsis and septic shock. Journal of intensive care medicine 2007;22:363-373.
55. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. International journal of cardiology 2004;95:13-17.
56. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Critical care 2006;10:R60.
57. Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Critical care medicine 2004;32:1637-1642.
58. Koester SK, Roth P, Mikulka WR, Schlossman SF, Zhang C, Bolton WE. Monitoring early cellular responses in apoptosis is aided by the mitochondrial membrane protein-specific monoclonal antibody APO2.7. Cytometry 1997;29:306-312.
59. Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive care medicine 2010;36:1286-1298.
60. Ince C, Mayeux PR, Nguyen T, et al. The Endothelium in Sepsis. Shock 2016;45:259-270.
61. Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. Journal of cellular and molecular medicine 2004;8:498-508.
62. Becchi C, Pillozzi S, Fabbri LP, et al. The increase of endothelial progenitor cells in the peripheral blood: a new parameter for detecting onset and severity of sepsis. International journal of immunopathology and pharmacology 2008;21:697-705.
63. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-967.
64. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine 1999;5:434-438.
65. Tsai NW, Hung SH, Huang CR, et al. The association between circulating endothelial progenitor cells and outcome in different subtypes of acute ischemic stroke. Clinica chimica acta; international journal of clinical chemistry 2014;427:6-10.
66. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine 2005;353:999-1007.
67. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology 2007;49:741-752.
68. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005;111:2981-2987.
69. Cribbs SK, Sutcliffe DJ, Taylor WR, et al. Circulating endothelial progenitor cells inversely associate with organ dysfunction in sepsis. Intensive care medicine 2012;38:429-436.
70. Mayr FB, Spiel AO, Leitner JM, Firbas C, Sieghart W, Jilma B. Effects of low dose endotoxemia on endothelial progenitor cells in humans. Atherosclerosis 2007;195:e202-206.
71. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Critical care medicine 2004;32:1825-1831.
72. Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive care medicine 2008;34:2210-2217.
73. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003;101:3765-3777.
74. Luo TH, Wang Y, Lu ZM, et al. The change and effect of endothelial progenitor cells in pig with multiple organ dysfunction syndromes. Critical care 2009;13:R118.
75. Qin SL, Li TS, Takahashi M, Hamano K. In vitro assessment of the effect of interleukin-1beta on angiogenic potential of bone marrow cells. Circulation journal : official journal of the Japanese Circulation Society 2006;70:1195-1199.
76. Mao A, Liu C, Guo Y, et al. Modulation of the number and functions of endothelial progenitor cells by interleukin 1beta in the peripheral blood of pigs: involvement of p38 mitogen-activated protein kinase signaling in vitro. The journal of trauma and acute care surgery 2012;73:1145-1151.
77. Hotchkiss RS, Tinsley KW, Karl IE. Role of apoptotic cell death in sepsis. Scandinavian journal of infectious diseases 2003;35:585-592.
78. Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A. Leukocyte apoptosis and its significance in sepsis and shock. Journal of leukocyte biology 2005;78:325-337.
79. Harter L, Mica L, Stocker R, Trentz O, Keel M. Mcl-1 correlates with reduced apoptosis in neutrophils from patients with sepsis. Journal of the American College of Surgeons 2003;197:964-973.
80. Daigneault M, De Silva TI, Bewley MA, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS pathogens 2012;8:e1002814.
81. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nature reviews Immunology 2006;6:813-822.
82. Hotchkiss RS, Coopersmith CM, Karl IE. Prevention of lymphocyte apoptosis--a potential treatment of sepsis? Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005;41 Suppl 7:S465-469.
83. Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? American journal of physiology Lung cellular and molecular physiology 2008;294:L632-641.
84. Pelekanou A, Tsangaris I, Kotsaki A, et al. Decrease of CD4-lymphocytes and apoptosis of CD14-monocytes are characteristic alterations in sepsis caused by ventilator-associated pneumonia: results from an observational study. Critical care 2009;13:R172.
85. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical care medicine 1999;27:1230-1251.
86. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. Journal of immunology 2001;166:6952-6963.
87. Ayala A, Perl M, Venet F, Lomas-Neira J, Swan R, Chung CS. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Current pharmaceutical design 2008;14:1853-1859.
88. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. The Journal of clinical investigation 2004;113:1318-1327.
89. Taneja R, Parodo J, Jia SH, Kapus A, Rotstein OD, Marshall JC. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Critical care medicine 2004;32:1460-1469.
90. Le Bras M, Rouy I, Brenner C. The modulation of inter-organelle cross-talk to control apoptosis. Medicinal chemistry 2006;2:1-12.
91. Cheng JP, Lane JD. Organelle dynamics and membrane trafficking in apoptosis and autophagy. Histology and histopathology 2010;25:1457-1472.
92. Bussing A, Vervecken W, Wagner M, Wagner B, Pfuller U, Schietzel M. Expression of mitochondrial Apo2.7 molecules and caspase-3 activation in human lymphocytes treated with the ribosome-inhibiting mistletoe lectins and the cell membrane permeabilizing viscotoxins. Cytometry 1999;37:133-139.
93. Sesso A, Belizario JE, Marques MM, et al. Mitochondrial swelling and incipient outer membrane rupture in preapoptotic and apoptotic cells. Anatomical record 2012;295:1647-1659.
94. Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Science's STKE : signal transduction knowledge environment 2006;2006:pe44.
95. Matsuda N, Yamamoto S, Takano K, et al. Silencing of fas-associated death domain protects mice from septic lung inflammation and apoptosis. American journal of respiratory and critical care medicine 2009;179:806-815.
96. Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. Journal of immunology 2010;184:3768-3779.
97. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunological reviews 2008;224:166-182.
98. Adrie C, Bachelet M, Vayssier-Taussat M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. American journal of respiratory and critical care medicine 2001;164:389-395.
99. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annual review of immunology 2008;26:421-452.
100. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. The Journal of clinical investigation 1991;88:1747-1754.
101. Manjuck J, Saha DC, Astiz M, Eales LJ, Rackow EC. Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients. The Journal of laboratory and clinical medicine 2000;135:153-160.
102. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clinics in chest medicine 2008;29:617-625, viii.
103. Berg RM, Moller K, Bailey DM. Neuro-oxidative-nitrosative stress in sepsis. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2011;31:1532-1544.
104. Jacob A, Brorson JR, Alexander JJ. Septic encephalopathy: inflammation in man and mouse. Neurochemistry international 2011;58:472-476.
105. Chuang YC, Tsai JL, Chang AY, Chan JY, Liou CW, Chan SH. Dysfunction of the mitochondrial respiratory chain in the rostral ventrolateral medulla during experimental endotoxemia in the rat. Journal of biomedical science 2002;9:542-548.
106. Maekawa T, Fujii Y, Sadamitsu D, et al. Cerebral circulation and metabolism in patients with septic encephalopathy. The American journal of emergency medicine 1991;9:139-143.
107. Wong D, Dorovini-Zis K. Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvascular research 1995;49:325-339.
108. Kafa IM, Ari I, Kurt MA. The peri-microvascular edema in hippocampal CA1 area in a rat model of sepsis. Neuropathology : official journal of the Japanese Society of Neuropathology 2007;27:213-220.
109. Shinozaki K, Oda S, Sadahiro T, et al. S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review. Critical care 2009;13:R121.
110. Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochemistry international 2008;52:447-456.
111. Lu CX, Qiu T, Tong HS, Liu ZF, Su L, Cheng B. Peripheral T-lymphocyte and natural killer cell population imbalance is associated with septic encephalopathy in patients with severe sepsis. Experimental and therapeutic medicine 2016;11:1077-1084.
112. Sprung CL, Peduzzi PN, Shatney CH, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Critical care medicine 1990;18:801-806.
113. Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. Jama 1996;275:470-473.
114. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature reviews Neuroscience 2006;7:41-53.
115. Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE. Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? American journal of surgery 1981;141:136-142.
116. Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clinical science 1999;96:461-466.
117. Bozza FA, Garteiser P, Oliveira MF, et al. Sepsis-associated encephalopathy: a magnetic resonance imaging and spectroscopy study. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2010;30:440-448.
118. Sharshar T, Carlier R, Bernard F, et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive care medicine 2007;33:798-806.
119. Hofer S, Bopp C, Hoerner C, et al. Injury of the blood brain barrier and up-regulation of icam-1 in polymicrobial sepsis. The Journal of surgical research 2008;146:276-281.
120. Hamed SA, Hamed EA, Abdella MM. Septic encephalopathy: relationship to serum and cerebrospinal fluid levels of adhesion molecules, lipid peroxides and S-100B protein. Neuropediatrics 2009;40:66-72.
121. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathology and applied neurobiology 2011;37:24-39.
122. O'Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. The Journal of clinical investigation 1993;92:945-951.
123. Blankenberg S, Rupprecht HJ, Bickel C, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 2001;104:1336-1342.
124. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney international 2006;69:1996-2002.
125. Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Critical care 2005;9:R363-374.
126. Langenberg C, Gobe G, Hood S, May CN, Bellomo R. Renal histopathology during experimental septic acute kidney injury and recovery. Critical care medicine 2014;42:e58-67.
127. Jacobs R, Honore PM, Joannes-Boyau O, et al. Septic acute kidney injury: the culprit is inflammatory apoptosis rather than ischemic necrosis. Blood purification 2011;32:262-265.
128. Peters K, Unger RE, Brunner J, Kirkpatrick CJ. Molecular basis of endothelial dysfunction in sepsis. Cardiovascular research 2003;60:49-57.
129. Mesri M, Altieri DC. Endothelial cell activation by leukocyte microparticles. Journal of immunology 1998;161:4382-4387.
130. Terzi I, Papaioannou V, Papanas N, et al. Alpha1-microglobulin as an early biomarker of sepsis-associated acute kidney injury: a prospective cohort study. Hippokratia 2014;18:262-268.
131. Vanmassenhove J, Glorieux G, Lameire N, et al. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: a prospective cohort study of patients with sepsis. BMC nephrology 2015;16:18.
132. Derive M, Gibot S. Urine sTREM-1 assessment in diagnosing sepsis and sepsis-related acute kidney injury. Critical care 2011;15:1013.
133. Nakamura Y, Ishikura H, Nishida T, et al. Usefulness of presepsin in the diagnosis of sepsis in patients with or without acute kidney injury. BMC anesthesiology 2014;14:88.
134. Sawhney S, Fluck N, Fraser SD, et al. KDIGO-based acute kidney injury criteria operate differently in hospitals and the community-findings from a large population cohort. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2016;31:922-929.
135. Oppert M, Engel C, Brunkhorst FM, et al. Acute renal failure in patients with severe sepsis and septic shock--a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2008;23:904-909.
136. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical care medicine 2006;34:1589-1596.
137. Poukkanen M, Wilkman E, Vaara ST, et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Critical care 2013;17:R295.
138. Wu X, Guo R, Wang Y, Cunningham PN. The role of ICAM-1 in endotoxin-induced acute renal failure. American journal of physiology Renal physiology 2007;293:F1262-1271.
139. Singbartl K, Ley K. Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Critical care medicine 2000;28:2507-2514.
140. Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2000;14:48-54.
141. Sadik NA, Mohamed WA, Ahmed MI. The association of receptor of advanced glycated end products and inflammatory mediators contributes to endothelial dysfunction in a prospective study of acute kidney injury patients with sepsis. Molecular and cellular biochemistry 2012;359:73-81.
142. Powell TC, Powell SL, Allen BK, Griffin RL, Warnock DG, Wang HE. Association of inflammatory and endothelial cell activation biomarkers with acute kidney injury after sepsis. SpringerPlus 2014;3:207.
143. Zonneveld R, Martinelli R, Shapiro NI, Kuijpers TW, Plotz FB, Carman CV. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Critical care 2014;18:204.
144. Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Critical care medicine 2002;30:S302-312.
145. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301-314.
146. Parrillo JE. Pathogenetic mechanisms of septic shock. The New England journal of medicine 1993;328:1471-1477.
147. Doerschuk CM, Mizgerd JP, Kubo H, Qin L, Kumasaka T. Adhesion molecules and cellular biomechanical changes in acute lung injury: Giles F. Filley Lecture. Chest 1999;116:37S-43S.
148. Montefort S, Roche WR, Howarth PH, et al. Intercellular adhesion molecule-1 (ICAM-1) and endothelial leucocyte adhesion molecule-1 (ELAM-1) expression in the bronchial mucosa of normal and asthmatic subjects. The European respiratory journal 1992;5:815-823.
149. Flori HR, Ware LB, Glidden D, Matthay MA. Early elevation of plasma soluble intercellular adhesion molecule-1 in pediatric acute lung injury identifies patients at increased risk of death and prolonged mechanical ventilation. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 2003;4:315-321.
150. Self WH, Grijalva CG, Williams DJ, et al. Procalcitonin as an Early Marker of the Need for Invasive Respiratory or Vasopressor Support in Adults with Community-Acquired Pneumonia. Chest 2016.
151. Cartin-Ceba R, Hubmayr RD, Qin R, et al. Predictive value of plasma biomarkers for mortality and organ failure development in patients with acute respiratory distress syndrome. Journal of critical care 2015;30:219 e211-217.
152. Palud A, Parmentier-Decrucq E, Pastre J, De Freitas Caires N, Lassalle P, Mathieu D. Evaluation of endothelial biomarkers as predictors of organ failures in septic shock patients. Cytokine 2015;73:213-218.
153. Liu S, Liu C, Wang Z, Huang J, Zeng Q. microRNA-23a-5p acts as a potential biomarker for sepsis-induced acute respiratory distress syndrome in early stage. Cellular and molecular biology 2016;62:31-37.
154. Imai Y, Parodo J, Kajikawa O, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. Jama 2003;289:2104-2112.
155. Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive care medicine 2005;31:922-926.
156. Abonia JP, Hallgren J, Jones T, et al. Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood 2006;108:1588-1594.
157. Chin JE, Hatfield CA, Winterrowd GE, et al. Airway recruitment of leukocytes in mice is dependent on alpha4-integrins and vascular cell adhesion molecule-1. The American journal of physiology 1997;272:L219-229.
158. Lukacs NW, Ward PA. Inflammatory mediators, cytokines, and adhesion molecules in pulmonary inflammation and injury. Advances in immunology 1996;62:257-304.
159. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068-2101.
160. Henseleit U, Steinbrink K, Sunderkotter C, Goebeler M, Roth J, Sorg C. Expression of murine VCAM-1 in vitro and in different models of inflammation in vivo: correlation with immigration of monocytes. Experimental dermatology 1994;3:249-256.
161. Elices MJ, Osborn L, Takada Y, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990;60:577-584.
162. Woo CH, Lim JH, Kim JH. VCAM-1 upregulation via PKCdelta-p38 kinase-linked cascade mediates the TNF-alpha-induced leukocyte adhesion and emigration in the lung airway epithelium. American journal of physiology Lung cellular and molecular physiology 2005;288:L307-316.
163. Tong Q, Zheng L, Lin L, Li B, Wang D, Li D. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway. American journal of respiratory cell and molecular biology 2006;35:444-456.
164. Liu T, Jin H, Ullenbruch M, et al. Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. Journal of immunology 2004;173:3425-3431.
165. Endo S, Inada K, Kasai T, et al. Levels of soluble adhesion molecules and cytokines in patients with septic multiple organ failure. Journal of inflammation 1995;46:212-219.
166. Krueger M, Heinzmann A, Nauck M. Adhesion molecules in pediatric intensive care patients with organ dysfunction syndrome. Intensive care medicine 2007;33:359-363.
167. Jaeschke H, Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury. Journal of leukocyte biology 1997;61:647-653.
168. Ward PA, Varani J. Mechanisms of neutrophil-mediated killing of endothelial cells. Journal of leukocyte biology 1990;48:97-102.
169. Conner ER, Ware LB, Modin G, Matthay MA. Elevated pulmonary edema fluid concentrations of soluble intercellular adhesion molecule-1 in patients with acute lung injury: biological and clinical significance. Chest 1999;116:83S-84S.
170. Kung CT, Hsiao SY, Su CM, et al. Serum adhesion molecules as predictors of bacteremia in adult severe sepsis patients at the emergency department. Clinica chimica acta; international journal of clinical chemistry 2013;421:116-120.
171. McGill SN, Ahmed NA, Christou NV. Endothelial cells: role in infection and inflammation. World journal of surgery 1998;22:171-178.
172. Gorlatov S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin beta chains. Biochemistry 2002;41:4107-4116.
173. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annual review of biomedical engineering 2007;9:121-167.
174. Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature medicine 2012;18:1217-1223.
175. Singh A, Ramnath RD, Foster RR, et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PloS one 2013;8:e55852.
176. Nieuwdorp M, Meuwese MC, Mooij HL, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. Journal of applied physiology 2008;104:845-852.
177. Skibsted S, Jones AE, Puskarich MA, et al. Biomarkers of endothelial cell activation in early sepsis. Shock 2013;39:427-432.
178. Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. Journal of leukocyte biology 2006;79:1105-1116.
179. Long C, Wang Y, Herrera AH, Horiuchi K, Walcheck B. In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli-mediated peritonitis. Journal of leukocyte biology 2010;87:1097-1101.
180. Newman W, Beall LD, Carson CW, et al. Soluble E-selectin is found in supernatants of activated endothelial cells and is elevated in the serum of patients with septic shock. Journal of immunology 1993;150:644-654.
181. Lo SK, Lee S, Ramos RA, et al. Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha m beta 2) on human neutrophils. The Journal of experimental medicine 1991;173:1493-1500.
182. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England journal of medicine 2003;348:593-600.
183. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. American journal of respiratory and critical care medicine 2005;172:854-860.
184. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340-1346.
185. Powell TM, Paul JD, Hill JM, et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arteriosclerosis, thrombosis, and vascular biology 2005;25:296-301.
186. Grad S, Ertel W, Keel M, Infanger M, Vonderschmitt DJ, Maly FE. Strongly enhanced serum levels of vascular endothelial growth factor (VEGF) after polytrauma and burn. Clinical chemistry and laboratory medicine 1998;36:379-383.
187. Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G. Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells. Journal of immunology 2004;173:5268-5274.
188. Biffl WL, Moore EE, Zallen G, et al. Neutrophils are primed for cytotoxicity and resist apoptosis in injured patients at risk for multiple organ failure. Surgery 1999;126:198-202.
189. Ayala A, Chung CS, Lomas JL, et al. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. The American journal of pathology 2002;161:2283-2294.
190. Pan Y, Li XP, Sun JF, et al. [Effects of glucocorticoids on the expression of GTIR and apoptosis of the CD4(+)CD25(+)CD127(dim/-) T cells in patients with systemic lupus erythematosus]. Beijing da xue xue bao Yi xue ban = Journal of Peking University Health sciences 2012;44:215-220.
191. Midgley A, McLaren Z, Moots RJ, Edwards SW, Beresford MW. The role of neutrophil apoptosis in juvenile-onset systemic lupus erythematosus. Arthritis and rheumatism 2009;60:2390-2401.
192. Habib HM, Taher TE, Isenberg DA, Mageed RA. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scandinavian journal of rheumatology 2009;38:112-120.
193. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney international 2002;62:237-244.
194. Umbro I, Gentile G, Tinti F, Muiesan P, Mitterhofer AP. Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. The Journal of infection 2016;72:131-142.
195. Sjovall F, Morota S, Asander Frostner E, Hansson MJ, Elmer E. Cytokine and nitric oxide levels in patients with sepsis--temporal evolvement and relation to platelet mitochondrial respiratory function. PloS one 2014;9:e97673.
196. Johannes T, Mik EG, Klingel K, Dieterich HJ, Unertl KE, Ince C. Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia. Shock 2009;31:521-528.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code