Responsive image
博碩士論文 etd-0729117-110503 詳細資訊
Title page for etd-0729117-110503
論文名稱
Title
大台北地區大氣細懸浮微粒多環芳香烴濃度之時空變化
Spatial and Seasonal Variations of PM2.5-associated Polycyclic Aromatic Hydrocarbons in Ambient Air from Taipei Area
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-15
繳交日期
Date of Submission
2017-08-29
關鍵字
Keywords
致癌風險評估、特徵比、階層群集分析、主成分分析、PAHs、PM2.5
cancer risk assessment, diagnostic ratio, PM2.5, hierarchical cluster analysis, principle components analysis, PAHs
統計
Statistics
本論文已被瀏覽 5741 次,被下載 56
The thesis/dissertation has been browsed 5741 times, has been downloaded 56 times.
中文摘要
本研究探討大台北地區大氣中細懸浮微粒(PM2.5)和多環芳香烴(PAHs)之時空變化,以及環境健康風險評估,於2015年1月至2016年4月期間,在大台北地區設置6個PM2.5採樣測站,分別有代表工業區的林口(LK)測站、商業區板橋(BQ)和萬華(WH)測站、住宅區的新店(XD)和松山(SS)測站及郊區的士林(SL)測站。研究結果顯示各測站PM2.5年平均濃度以BQ最高,SL最低;分別為LK(39.6±17.0 μg/m3)、BQ(44.0±15.2 μg/m3)、XD(39.1±17.8 μg/m3)、SL(36.5±14.3 μg/m3)、WH(41.0±13.9 μg/m3)和SS測站(36.8±13.9 μg/m3)。而在PAHs方面也是以BQ最高,但最低點為LK。各採樣測站PAHs年平均濃度分別為LK (0.99±0.65 ng/m3)、BQ (1.42±0.94 ng/m3)、XD (1.10±0.86 ng/m3)、SL (1.14±0.90 ng/m3)、WH (1.33±0.91 ng/m3)和SS (1.24±0.80 ng/m3)。PM2.5和PAHs有明顯的季節變化趨勢,大致上呈現夏季濃度較低,春、冬季濃度較高。和氣象因素的相關性分析結果,PM2.5的濃度和風速有顯著的負相關,PAHs則和溫度有顯著的負相關,顯示出風速較大有利於PM2.5的擴散與高溫利於PAHs的揮發。根據主成分分析(PCA)、階層群集分析(HCA)和特徵比(diagnostic ratio)發現,大台北地區6個採樣測站污染源皆以汽柴油混和的交通工具排放為主,顯示大台北地區的空氣受交通污染源影響高過於工業區影響。而在BQ、XD、SL、WH測站有些許廢棄物焚燒之特徵。環境健康風險評估方面,各採樣測站毒性當量(BaPeq)平均濃度為LK(0.09 ng/m3)、BQ(0.13 ng/m3)、XD(0.09 ng/m3)、SL(0.09 ng/m3)、WH(0.12 ng/m3)和SS(0.11 ng/m3),而在計算個體終生致癌風險度時則需考慮個體差異及不確定因素。
Abstract
This study aims to research spatial distribution and seasonal variation of 16 fine particulate matter (PM2.5) bound polycyclic aromatic hydrocarbons (PAHs) and their cancer risk assessments in Taipei ambient air. Ambient air samples of 6 sites including industrial area (LK), commercial areas (BQ, and WH), residential areas (XD, and SS) and suburban area (SL), were collected twice a month from January 2015 to April 2016. BQ exhibited the highest annual average PM2.5 concentration; while SL the lowest. The annual average concentrations of PM2.5 at LK, BQ, XD, SL, WH, and SS sites were 39.6±17.0, 44.0±15.2, 39.1±17.8, 36.5±14.3, 41.0±13.9, and 36.8±13.9 μg/m3, respectively. BQ also exhibited the highest annual mean PM2.5-PAHs concentration, while LK the lowest. Our result indicated the vehicle emission was dominant compared with industrial emission in the study area. Annual mean concentrations of PM2.5-PAHs were 0.99±0.65, 1.42±0.94, 1.10±0.86, 1.14±0.90, 1.33±0.91, and 1.24±0.80 ng/m3 at LK, BQ, XD, SL, WH, and SS sites, respectively. Significant seasonal variations were found in PM2.5 and PM2.5-PAHs in this study. In general, the concentrations were relatively low in summer and high in spring and winter. Correlation analysis with meteorological parameters indicated that PM2.5 was negatively correlated with wind speed; while PM2.5-PAHs was negatively correlated with temperature. Principle components analysis (PCA), hierarchical cluster analysis (HCA), and diagnostic ratio were performed to investigate the sources of PM2.5-PAHs. Vehicle emission, including gasoline and diesel engines, was the predominant source in Taipei urban area; while incineration and coal combustion emissions were also found. In cancer risk assessments among 6 sites, the concentrations of BaPeq were 0.09, 0.13, 0.09, 0.09, 0.12 and 0.11 ng/m3 at LK, BQ, XD, SL, WH, and SS, respectively. Individual differences and other conditions should be concerned when cancer risk assessment was calculated.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 ix
表目錄 xi
附表 xii
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 懸浮微粒(Particulate matter)介紹 4
2-1-1 大氣環境中PM來源 4
2-1-2 PM2.5對人體健康之影響 5
2-2 多環芳香烴類(PAHs)介紹 5
2-2-1 PAHs物化特性 5
2-2-2 PAHs對人體健康之影響 6
2-2-3 PAHs形成原因 9
2-2-4 大氣環境中PAHs來源 9
2-3 都市環境中的PM2.5、PM2.5-PAHs來源與其影響因素 12
第三章 研究方法 14
3-1 研究架構與流程 14
3-2 材料與儀器 15
3-2-1 材料 15
3-2-2 試藥器具及處理方法 16
3-2-3 設備與分析儀器 17
3-3 樣品採集 18
3-3-1 採樣時間與地點 18
3-3-2 採樣方法 20
3-4 樣品分析 20
3-4-1 PAHs分析 20
3-5 品保及品管(QA/QC) 23
3-5-1 空白實驗 23
3-5-2 方法偵測極限 23
3-5-3 擬似標準品回收率 23
3-6 統計方法及來源分析 24
3-6-1 主成分分析(Principle Components Analysis, PCA) 24
3-6-2 階層群集分析(Hierarchical Cluster Analysis, HCA) 24
3-6-3 特徵比(Diagnostic ratio) 25
3-7 致癌風險評估(Cancer risk assessment) 25
第四章 結果與討論 26
4-1 大氣中PM2.5濃度 26
4-1-1 PM2.5濃度空間分布 26
4-1-2 PM2.5濃度季節差異 31
4-2 大氣中PM2.5-PAHs濃度 35
4-2-1 大氣中PM2.5-PAHs濃度分布 35
4-2-2 大氣中PM2.5-PAHs成分組成 41
4-2-3 PM2.5與PM2.5-PAHs之關係 47
4-3 PAHs來源判斷分析 48
4-3-1 主成分分析(Principle Components Analysis, PCA) 48
4-3-2 階層群集分析(Hierarchical Cluster Analysis, HCA) 59
4-3-3 特徵比(Diagnostic Ratio) 66
4-4 大氣環境中PM2.5-PAHs致癌風險評估 68
4-4-1 大氣環境中PM2.5-BaP濃度時空變化 68
4-4-2 大氣環境致癌風險評估 69
第五章 結論與建議 71
5-1 結論 71
5-2 建議 72
參考文獻 73

圖目錄
圖2-1 PAHs之分子結構 8
圖3-1 研究架構流程圖 14
圖3-2 採樣位置圖 19
圖3-3 PAHs實驗分析流程 22
圖4-1 各採樣測站PM2.5濃度趨勢圖 31
圖4-2 採樣測站PM2.5平均濃度和風速 32
圖4-3 本研究和環保署(EPA)空氣品質監測站逐月濃度趨勢比較 34
圖4-4 採樣測站PM2.5-PAHs平均濃度和溫度 39
圖4-5 各採樣測站PM2.5-PAHs濃度逐月變化 40
圖4-6 各採樣測站PM2.5-PAHs濃度四季差異 40
圖4-7 各採樣測站PM2.5-PAHs環數分布比例(%) 42
圖4-8 各採樣測站PM2.5-PAHs物種差異分布(%) 43
圖4-9 測站平均PM2.5與PM2.5-PAHs濃度趨勢 47
圖4-10 LK測站PAHs主成分分析分數圖(PC1 vs PC2) 53
圖4-11 BQ測站PAHs主成分分析分數圖(PC1 vs PC2) 53
圖4-12 XD測站PAHs主成分分析分數圖(PC1 vs PC2) 54
圖4-13 SL測站PAHs主成分分析分數圖(PC1 vs PC2) 54
圖4-14 WH測站PAHs主成分分析分數圖(PC1 vs PC2) 55
圖4-15 SS測站PAHs主成分分析分數圖(PC1 vs PC2) 55
圖4-16 LK測站PAHs主成分分析分數圖(PC2 vs PC3) 56
圖4-17 BQ測站PAHs主成分分析分數圖(PC2 vs PC3) 56
圖4-18 XD測站PAHs主成分分析分數圖(PC2 vs PC3) 57
圖4-19 SL測站PAHs主成分分析分數圖(PC2 vs PC3) 57
圖4-20 WH測站PAHs主成分分析分數圖(PC2 vs PC3) 58
圖4-21 SS測站PAHs主成分分析分數圖(PC2 vs PC3) 58
圖4-22 LK測站群集分析和Cluster相對濃度分布 60
圖4-23 BQ測站群集分析和Cluster相對濃度分布 61
圖4-24 XD測站群集分析和Cluster相對濃度分布 62
圖4-25 SL測站群集分析和Cluster相對濃度分布 63
圖4-26 WH測站群集分析和Cluster相對濃度分布 64
圖4-27 SS測站群集分析和Cluster相對濃度分布 65
圖4-28 特徵比分析(以測站劃分) 67
圖4-29 特徵比分析(以季節劃分) 67

表目錄
表2-1 美國環保署列出的16種優先管制PAHs及其物化特性 7
表4-1 各採樣測站PM2.5濃度(μg/m3) 27
表4-2 國內外PM2.5濃度比較(μg/m3) 29
表4-3 PM2.5實測值和氣候因素相關性 32
表4-4 本研究PM2.5實測值和環保署測站(EPA)監測值之相關性 33
表4-5 各採樣測站PM2.5-PAHs平均濃度(ng/m3) 36
表4-6 國內外PM2.5-PAHs濃度比較(ng/m3) 37
表4-7 PM2.5-PAHs實測值和氣候因素相關性 41
表4-8 各採樣站PM2.5-16PAH濃度季節變化(ng/m3) 44
表4-9 各採樣測站PAHs環數高低分布所佔比例(%) 46
表4-10 各採樣測站PAHs轉軸後主成分分析因素負荷表 50
表4-11 國際間PM2.5-BaP相關標準規範 68
表4-12 本研究各測站四季BaP濃度(ng/m3) 68
表4-13 PAHs物種毒性當量係數(Nisbet & Lagoy, 1992) 69
表4-14 各採樣測站BaPeq濃度(ng/m3) 70

附表
附表1 空白實驗及偵測極限(MDL)(ng) 81
附表2 擬似標準品回收率 82
附表3 LK測站PAHs濃度(ng/m3) 83
附表4 BQ測站PAHs濃度(ng/m3) 86
附表5 XD測站PAHs濃度(ng/m3) 89
附表6 SL測站PAHs濃度(ng/m3) 92
附表7 WH測站PAHs濃度(ng/m3) 95
附表8 SS測站PAHs濃度(ng/m3) 98
附表9 各測站採樣期間平均溫度(℃) 101
附表10 各測站採樣期間平均相對濕度(%) 102
附表11 各測站採樣期間平均風向(degress) 103
附表12 各測站採樣期間平均風速(m/sec) 104
參考文獻 References
Akyuz, M., & Cabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazerdous Materials, 170(1), 13-21. doi:10.1016/j.jhazmat.2009.05.029
Anastasopoulos, A. T., Wheeler, A. J., Karman, D., & Kulka, R. H. (2012). Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5. Atmospheric Environment, 59, 272-283. doi:10.1016/j.atmosenv.2012.05.004
Avino, P., Protano, C., Vitali, M., & Manigrasso, M. (2016). Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract. Environmental Pollution, 216, 530-537. doi:10.1016/j.envpol.2016.06.005
Bojes, H. K., & Pope, P. G. (2007). Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul Toxicol Pharmacol, 47(3), 288-295. doi:10.1016/j.yrtph.2006.11.007
Boström, C.-E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., . . . Westerholm, R. (2002). Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. Environmental Heal Perspectives, 110, 451-488.
Bostrom, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., . . . Westerholm, R. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110, 451-488.
Bridges Jr, C. C. (1966). Hierarchical cluster analysis. Psychological reports, 18(3), 851-854.
Callen, M. S., Iturmendi, A., & Lopez, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167-177. doi:10.1016/j.envpol.2014.08.025
Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33(23), 3731-3738. doi:Doi 10.1016/S1352-2310(99)00199-5
Cetin, B., Ozturk, F., Keles, M., & Yurdakul, S. (2017). PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects. Environmental Pollution, 220(Pt B), 1322-1332. doi:10.1016/j.envpol.2016.11.002
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., . . . Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034. doi:10.1016/j.scitotenv.2016.11.025
Chen, Y. C., Chiang, H. C., Hsu, C. Y., Yang, T. T., Lin, T. Y., Chen, M. J., . . . Wu, Y. S. (2016). Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution, 218, 372-382. doi:10.1016/j.envpol.2016.07.016
Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651-2662. doi:10.1016/j.atmosenv.2011.02.066
Contini, D., Gambaro, A., Belosi, F., De Pieri, S., Cairns, W. R., Donateo, A., . . . Citron, M. (2011). The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice. J Environ Manage, 92(9), 2119-2129. doi:10.1016/j.jenvman.2011.01.016
EEA. (2015). Air quality in Europe - 2015 report: European Enviroment Agency.
Ghio, A. J., & Huang, Y. C. T. (2004). Exposure to concentrated ambient particles (CAPs): A review. Inhalation Toxicology, 16(1), 53-59. doi:10.1080/08958370490258390
Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307-5317. doi:10.1016/j.atmosenv.2003.09.011
Guo, Z. G., Lin, T., Zhang, G., Hu, L. M., & Zheng, M. (2009). Occurrence and sources of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in the roadside environment of a major city in China. Journal of Hazardous Materials, 170(2-3), 888-894. doi:10.1016/j.jhazmat.2009.05.051
Gurjar, B. R., Molina, L. T., & Ojha, C. S. P. (2010). Air Pollution: Health and Environmental Impacts: CRC Press.
Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazerdous Materials, 169(1-3), 1-15. doi:10.1016/j.jhazmat.2009.03.137
Harrison, R. M., & Yin, J. (2004). Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. American Journal of Respiratory and Critical Care Medicine, 169(8), 934-940. doi:10.1164/rccm.200310-1463OC.
Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM(2.5)) in retirement communities of the Los Angeles Basin. Science of The Total Environment, 490, 528-537. doi:10.1016/j.scitotenv.2014.05.044
Ho, K. F., Lee, S. C., & Chiu, G. M. Y. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36(1), 57-65. doi:Doi 10.1016/S1352-2310(01)00475-7
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health. doi:10.1186/1476-069X-12-43
Kakareka, S. V., & Kukharchyk, T. I. (2003). PAH emission from the open burning of agricultural debris. Science of The Total Environment, 308(1-3), 257-261. doi:10.1016/s0048-9697(02)00650-2
Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362-367. doi:10.1016/j.envpol.2007.06.012
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). Pah Source Fingerprints for Coke Ovens, Diesel and Gasoline-Engines, Highway Tunnels, and Wood Combustion Emissions. Atmospheric Environment, 29(4), 533-542. doi:Doi 10.1016/1352-2310(94)00275-P
Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., . . . Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment, 106, 178-190. doi:10.1016/j.atmosenv.2015.01.077
Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environmental International, 60, 71-80. doi:10.1016/j.envint.2013.07.019
Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143. doi:10.1016/j.envint.2014.10.005
Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785-2790. doi:10.1016/S1352-2310(99)00312-X
Kume, K., Ohura, T., Noda, T., Amagai, T., & Fusaya, M. (2007). Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. Journal of Hazardous Materials, 144(1-2), 513-521. doi:10.1016/j.jhazmat.2006.10.079
Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives, 108(10), 941.
Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research-Reviews in Mutation Research, 636(1-3), 95-133. doi:10.1016/j.mrrev.2007.08.003
Li, C. S., & Ro, Y. S. (2000). Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmospheric Environment, 34(4), 611-620. doi:Doi 10.1016/S1352-2310(99)00171-5
Li, Y. S., Cao, J. J., Li, J. J., Zhou, J. M., Xu, H. M., Zhang, R. J., & Ouyang, Z. Y. (2013). Molecular distribution and seasonal variation of hydrocarbons in PM2.5 from Beijing during 2006. Particuology, 11(1), 78-85. doi:10.1016/j.partic.2012.09.002
Li, Z., Porter, E. N., Sjödin, A., Needham, L. L., Lee, S., Russell, A. G., & Mulholland, J. A. (2009). Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta—Seasonal variations at urban, suburban, and rural ambient air monitoring sites. Atmospheric Environment, 43(27), 4187-4193. doi:10.1016/j.atmosenv.2009.05.031
Li, Z., Sjodin, A., Porter, E. N., Patterson, D. G., Needham, L. L., Lee, S., . . . Mulholland, J. A. (2009). Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta. Atmospheric Environment, 43(5), 1043-1050. doi:10.1016/j.atmosenv.2008.11.016
Liu, J., Man, R., Ma, S., Li, J., Wu, Q., & Peng, J. (2015). Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Marine Pollution Bulletin, 100(1), 134-143. doi:10.1016/j.marpolbul.2015.09.014
Manoli, E., Kouras, A., & Samara, C. (2004). Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere, 56(9), 867-878. doi:10.1016/j.chemosphere.2004.03.013
Mao, I., Chen, C., Lin, Y., & Chen, M. (2007). Airborne particle PM2.5/PM10 mass distribution and particle-bound PAH concentrations near a medical waste incinerator. Atmospheric Environment, 41(11), 2467-2475. doi:10.1016/j.atmosenv.2006.04.064
Martellini, T., Giannoni, M., Lepri, L., Katsoyiannis, A., & Cincinelli, A. (2012). One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environmental Pollution, 164, 252-258. doi:10.1016/j.envpol.2011.12.040
Misra, C., Geller, M. D., Shah, P., Sioutas, C., & Solomon, P. A. (2001). Development and Evaluation of a Continuous Coarse (PM10–PM25) Particle Monitor. Journal of the Air & Waste Management Association, 51(9), 1309-1317. doi:10.1080/10473289.2001.10464360
Nisbet, I. C. T., & Lagoy, P. K. (1992). TOXIC EQUIVALENCY FACTORS (TEFS) FOR POLYCYCLIC AROMATIC-HYDROCARBONS (PAHS). Regulatory Toxicology and Pharmacology, 16(3), 290-300. doi:10.1016/0273-2300(92)90009-x
Pui, D. Y. H., Chen, S.-C., & Zuo, Z. (2014). PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology, 13, 1-26. doi:10.1016/j.partic.2013.11.001
Ravindra, K., Sokhi, R., & Vangrieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921. doi:10.1016/j.atmosenv.2007.12.010
Rehwagen, M., Muller, A., Massolo, L., Herbarth, O., & Ronco, A. (2005). Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ, 348(1-3), 199-210. doi:10.1016/j.scitotenv.2004.12.050
Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot - a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4-6), 565-608. doi:Doi 10.1016/S0360-1285(00)00009-5
Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243-248. doi:10.1016/S0167-7799(02)01943-1
Singh, D. P., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 45(40), 7653-7663. doi:10.1016/j.atmosenv.2011.02.058
Skarek, M., Janosek, J., Cupr, P., Kohoutek, J., Novotna-Rychetska, A., & Holoubek, I. (2007). Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environ Int, 33(7), 859-866. doi:10.1016/j.envint.2007.04.001
Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Science of The Total Environment, 433, 8-19. doi:10.1016/j.scitotenv.2012.05.082
Teixeira, E. C., Agudelo-Castaneda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. D., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390-403. doi:10.1016/j.atmosres.2012.07.004
Tian, F. L., Chen, J. W., Qiao, X. L., Wang, Z., Yang, P., Wang, D. G., & Ge, L. K. (2009). Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmospheric Environment, 43(17), 2747-2753. doi:10.1016/j.atmosenv.2009.02.037
Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110-119. doi:10.1016/j.envpol.2011.10.025
United States Environmental Protection Agency. (n.d.). Slope Factors (SF) for Carcinogens from US EPA, from: http://www.popstoolkit.com/tools/HHRA/SF_USEPA.aspx
Walgraeve, C., Demeestere, K., Dewulf, J., Zimmermann, R., & Van Langenhove, H. (2010). Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmospheric Environment, 44(15), 1831-1846. doi:10.1016/j.atmosenv.2009.12.004
Wang, G. H., Kawamura, K., Lee, S., Ho, K. F., & Cao, J. J. (2006). Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environmental Science & Technology, 40(15), 4619-4625. doi:10.1021/es060291x
Wang, Q., Liu, M., Yu, Y., & Li, Y. (2016). Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environmental Pollution, 218, 118-128. doi:10.1016/j.envpol.2016.08.037
World Health Organization. (2003). Polynuclear aromatic hydrocarbons in drinking-water.
World Health Organization. (2009). Global health risks: mortality and burden of disease attributable to selected major risks.
World Health Organization. (2016). Ambient Air Pollution Database: Global Health Observatory (GHO) data. Situation at city level, from: http://www.who.int/gho/phe/outdoor_air_pollution/exposure/en/
Williams, P. T., & Nugranad, N. (2000). Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy, 25(6), 493-513. doi:Doi 10.1016/S0360-5442(00)00009-8
Xu, H. M., Ho, S. S. H., Gao, M. L., Cao, J. J., Guinot, B., Ho, K. F., . . . Zhang, Q. (2016). Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China. Environmental Pollution, 218, 1065-1073. doi:10.1016/j.envpol.2016.08.058
Xue, W., & Warshawsky, D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicology and Applied Pharmacology, 206(1), 73-93. doi:10.1016/j.taap.2004.11.006
Yan, J., Wang, L., Fu, P. P., & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 557(1), 99-108. doi:10.1016/j.mrgentox.2003.10.004
Yang, H. H., Lee, W. J., Chen, S. J., & Lai, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174. doi:Doi 10.1016/S0304-3894(98)00089-2
Zhu, L., Lu, H., Chen, S., & Amagai, T. (2009). Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials, 162(2-3), 1165-1170. doi:10.1016/j.jhazmat.2008.05.150
行政院環保署. (2011). 健康風險評估技術規範. (民國100年07月20日)
張文馨. (2008). 北投焚化爐附近社區空氣中PM2.5PM10及PAHs濃度研究. 國立陽明大學.
陳建男. (2001). 醫療廢棄物焚化爐排放細微粒與多環芳香烴化合物之空氣污染研究. 國立陽明大學.
游育欣. (2005). 車用汽油中替代含氧添加劑種類及含量對機車引擎排放多環芳香烴化合物之影響. 嘉南藥理科技大學.
潘侑興. (2016). 高雄都會區大氣懸浮微粒上多環芳香烴的調查研究. 國立中山大學.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code