Responsive image
博碩士論文 etd-0729117-114927 詳細資訊
Title page for etd-0729117-114927
論文名稱
Title
電鍍層對先進高強度鋼表面選擇性氧化與熱浸鍍鋅介面反應的影響
Effect of electrodeposited nickel coating on selective oxidation and hot-dip galvanizing of a Mn-Al advanced high strength steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-29
關鍵字
Keywords
電鍍鎳、露點、表面選擇性氧化物、錳鋁鋼材、熱浸鍍鋅
selective oxidation, electrodeposited nickel, hot-dip galvanizing, dew point, Mn-Al steel
統計
Statistics
本論文已被瀏覽 5685 次,被下載 3
The thesis/dissertation has been browsed 5685 times, has been downloaded 3 times.
中文摘要
本研究在中錳鋼材表面於連續退火前,預先電鍍厚度由100 nm至1000 nm不等的鎳層,探討鍍層厚度對於鋼材表面選擇性氧化的抑制效果,以及對熱浸鍍鋅製程中的介面反應的影響。退火實驗在保護性氣氛(N2+5%H2)下於紅外線熱處理爐(RTA)或熱浸鍍鋅模擬器中進行。退火露點為0˚C或-30˚C,退火後試片以X光光電子能譜儀分析氧化物成分、元素鍵結狀態與縱深分布,再以掃描式電子顯微鏡觀察表面氧化物形貌,同時藉由能量散佈分析儀分析氧化物的成分。退火後的試片於熱浸鍍鋅模擬器,在鋁含量0.2 wt%鋅浴中熱浸鍍鋅,觀察不同厚度的電鍍鎳層下鍍層外觀,並以掃描式電子顯微鏡與X光繞射儀分析鍍鎳層與鋅浴之間介面反應的產物,以及介面反應對熱浸鍍鋅鍍層外觀與附著性的影響。
實驗結果顯示,電鍍層的厚度為100 nm時,在露點0˚C下於700˚C退火60秒後,鍍層表面覆蓋一層連續的氧化物,氧化層厚度達200 nm左右,說明鍍層無法有效抑制合金元素的擴散。當厚度提升到200 nm時,表面仍有大量的氧化物顆粒覆蓋,但是氧化層厚度下降為70 nm。在鍍層厚度為1000 nm時,表面氧化物數量減少且粒徑約10~100 nm的氧化物分布在鎳的晶界上,同時有大面積的鎳鍍層裸露。相同鍍層厚度(1000 nm)的鋼材,相比露點0˚C之下於相同退火溫度(700˚C)條件下,當露點降低至-30˚C時,試片表面幾乎被鎳所覆蓋,只有零散的氧化物存在於鎳的晶界處。而在相同條件下(鍍層厚度為1000 nm、露點為0˚C)的鋼材,當退火溫度由700˚C 上升至750 ˚C時,表面氧化層平均厚度由30 nm增加至70 nm,氧化物的數量變多導致表面裸露的鎳層面積減少。由以上結果得知,電鍍層厚度提升、露點降低和退火溫度下降均能使抑制效果提升。經由X光光電子能譜儀的分析結果顯示,在不同鍍層厚度和退火條件下,氧化層皆是由MnO和Al2O3所組成。
鍍鋅後結果顯示,電鍍鎳層厚度500 nm以上在露點0 ˚C或-30 ˚C於退火溫度700 ˚C皆能有不錯的附著性,在鋅層與電鍍層之間會形成一層Ni/Al層增加濕潤性,改善鋅浴的附著性。當退火溫度提升至750 ˚C時,氧化層厚度增加使得鍍鋅性質差。鍍鎳層與鋅層介面所生成的顆粒多以Fe/Al相和Ni/Al相居多,而Fe/Al相以Fe2Al5生成,Ni/Al相以AlNi3或Al3Ni2生成。
Abstract
The effects of a nickel coating electrodeposited prior to annealing on suppressing the selective oxidation of medium-manganese steel, and how the interface reaction in subsequent hot-dip galvanizing is affected by the presence of the coating were studied. The coating thickness was in a range of 100 to 1000 nm. The annealing was carried out in an atmosphere of N2+5-10 %H2 for a short period of 60 s. The dew point of the atmosphere was 0 ˚C or -30 ˚C and the annealing temperature was either 700 ˚C or 750 ˚C. The annealed samples were characterized by X-ray photoelectron spectroscopy and scanning electron microscopy. The coated samples were also hot-dip galvanized in a zinc bath containing 0.2 wt% Al. After removing the overlaid Zn by acid, the Fe-Zn interface was examined with by SEM and grazing incidence XRD.
An oxide layer of as thick as 200 nm was found for a sample coated with 100 nm nickel and annealed at 700 ˚C for 60 seconds. The oxide layer was composed of MnO and Al2O3. By increasing the coating thickness to 200 nm, the thickness of the oxide layer was decreased to 70 nm. The oxide layer was composed of particles 10 nm~50 nm in size and Fe particles of 200 nm~500 nm were also observed. On further increase of the coating thickness to 1000 nm, only discrete oxide particles, 10 nm~100 nm in size, formed mostly on the grain boundaries of the Ni coating. In addition, more oxides particles were found on the coating surface when the sample was either annealed at a higher dew point of 0 ˚C or a higher temperature of 750 oC. After galvanizing, only scattered Fe2Al5 particles were found at the Fe-Zn interface as no coating was applied. Both Fe/Al and Ni/Al particles were observed at the interface for the pre-coated sample. The Fe/Al particles are mostly Fe2Al5 and the Ni/Al ones are AlNi3 or Al3Ni2 for which further study is needed.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
總目錄 vii
表目錄 ix
圖目錄 x
第一章、 前言 1
第二章、 文獻回顧 3
2.1 先進高強度鋼的發展 3
2.1.1 中錳鋼之成分與機械性質 4
2.2 熱浸鍍鋅製程的發展 5
2.2.1 熱浸鍍鋅的防蝕原理 5
2.2.2 連續式熱浸鍍鋅製程 5
2.3 熱浸鍍鋅鍍層結構 6
2.3.1 純鋅鍍層結構 6
2.3.2 鋅浴鋁含量對鍍層結構的影響 7
2.3.3 底材成分與選擇性氧化對鐵鋁反應的影響 8
2.3.4 鋁熱還原反應(Aluminothermic reduction) 9
2.3.5 TRIP鋼(6Mn-3Al)表面選擇性氧化與熱浸鍍鋅 10
2.4 合金鋼的預電鍍處理 11
2.4.1 電鍍的原理 11
2.4.2 合金元素的擴散 12
2.4.3 電鍍鎳層與鋅浴間的介面反應 13
第三章、 實驗方法 14
3.1 電鍍鎳試片退火處理 14
3.2 X光光電子能譜儀(X-ray Photoelectron spectroscopy, XPS)分析 15
3.3 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析 16
3.4 低掠角X光繞射(Grazing incident X-ray diffraction, GIXRD)分析 16
3.5 穿透式電子顯微鏡(Transmission electron microscopy, TEM)分析 16
第四章、 實驗結果 17
4.1電鍍鎳鋼片在退火後的SEM與XPS分析 17
4.1.1 N100鋼片的分析 17
4.1.2 N500鋼片的分析 19
4.1.3 N200鋼片的分析 20
4.1.4 N1000鋼片的分析 21
4.2 電鍍鎳鋼片在不同露點氣氛下的SEM與XPS分析 22
4.2.1 N200鋼片的分析 23
4.2.2 N1000鋼片的分析 24
4.3 不同退火溫度與選擇性氧化物的影響 25
4.3.1 N1000鋼片在露點0 ˚C下的分析 25
4.3.2 N1000鋼片在露點-30 ˚C下的分析 26
4.4 熱浸鍍鋅介面反應的結果 28
4.4.1 高露點(0 ˚C)之介面反應結果 28
4.4.2 低露點(-30 ˚C)之介面反應結果 30
第五章、討論 32
第六章、 結論 38
第七章、 參考文獻 39
附錄、圖表 46
參考文獻 References
1. R. Kuziak, R. Kawalla, S. Waengler, “Advanced high strength steels for automotive industry: a review”, Arch. Civ. Mech. Eng., 8. 2 (2008) 103-117.
2. R. W. Neu, “Performance and characterization of TWIP steels for automotive applications”, Mater. Performance, 2. 1 (2013) 244-284.
3. H. Aydin, E. Essadiqi, I. H. Jung, S. Yue, “Development of 3rd generation AHSS with medium Mn content alloying compositions”, Mater. Sci. Eng. A, 564 (2013) 501-508.
4. Q. Li, X. Huang, W. Huang, “Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process”, Mater. Sci. Eng. A, 662 (2016) 129-135.
5. Z. C. Li, R. D. K. Misra, Z. H. Cai, H. X. Li, H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect”, Mater. Sci. Eng. A, 673 (2016) 63-72.
6. 林意雯。熱處理溫度與時間對中錳鋼熱軋板之組織與拉伸性質的影響,國立中山大學材料與光電科學學系碩士學位論文,(2016)。
7. 詹智宇。熱處理溫度與時間對多相中錳鋼冷軋板之組織與拉伸性質之影響,國立中山大學材料與光電科學學系碩士學位論文,(2016)。
8. A. R. Marder, “The metallurgy of zinc-coated steel”, Prog. Mater. Sci., 45 (2000) 191-271.
9. 蔡翔任。露點對錳鋁鋼材選擇性氧化的研究,國立中山大學材料與光電科學學系碩士學位論文,(2016)。
10. C. A. N. Lanzillotto, F. B. Pickering, “Structure-property relationships in dual-phase steels”, Mater. Sci., 16 (1982) 371-383.
11. B. C. De Cooman, “Structure-properties relationship in TRIP steels containing carbide-free bainite”, Curr. Opin. Solid State Mater. Sci, 8 (2004) 285-303.
12. B. C. De Cooman, O. Kwon, K. G. Chin, “State-of-the-knowledge on TWIP steel”, Materials Science and Technology, first ed., Taylor and Francis, 2013.
13. Q. Li, X. Huang, W. Huang, “Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process”, Mater. Sci. Eng. A, 662 (2016) 129-135.
14. H. Guo, G. Gao, Xiaolu, R. D. K. Misra, B. Bai, “Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation”, Mater. Sci. Eng. A, 667 (2016) 224-231.
15. S. Lee, B. C. De Cooman, “Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel”, Metall. Mater. Trans. A, 45A (2014) 5009-5016.
16. H. Kamoutsi, E. Gioti, G. N. Haidemenopoulos, Z. Cai, H. Ding, “Kinetics of solute partitioning during intercritical annealing of a medium-Mn steel”, Metall. Mater. Trans. A, 46A (2015) 4841-4846.
17. R. L. Miller, “Ultrafine-grained microstructures and mechanical properties of alloy steels”, Metall. Trans., 3 (1972) 905-912.
18. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, “Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel”, Acta. Mater., 59 (2011) 4002-4014.
19. M. J. Merwin, “Low-carbon manganese TRIP steels”, Mater. Sci. Forum, 539-543 (2007) 4327-4332.
20. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, “Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite”, Scripta Mater., 63 (2010) 815-818.
21. D. W. Suh, S. J. Park, C. S. Oh, S. J. Kim, “Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels”, Scripta Mater., 57 (2007) 1097-1100.
22. D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, S. J. Kim, “Physical metallurgy and materials science”, Metall. Mater. Trans. A, 41 (2010) 397-408.
23. Z. Cai, H. Ding, Z. Ying, R. D. K. Misra, “Microstructure evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel”, J. Mater. Eng. Performance, 23. 4 (2014) 1131-1137.
24. S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh, H. N. Han, “Microstructure and tensile behavior of duplex low-density steel containing 5 mass % aluminum”, Scripta Mater., 8 (2013) 365-369.
25. M. G. Fontana, N. D. Greene, “Corrosion Engineering”, McGraw-Hill, New York, 1967.
26. J. S. Yu, J. X. Zhang, J. S. Liu, J. G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”, Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
27. L. Bordignon, G. Angeli, H. Bolt, R. Hekkens, W. Mascheck, “Enhanced hot dip galvanizing by controlled oxidation in the annealing furnace”, Proceedings of the 44th mechanical working and steel processing conference, Orlando, USA, September 8-11, 833-834 (2002).
28. C. E. Jordan, A. R. Marder, “Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450˚C: Part I 0.00 wt% Al-Zn baths”, J. Mater. Sci., 32 (1997) 5593-5602.

29. N. Y. Tang, G. R. Adams, P. S. Kolisnyk, “On determining effective aluminum in continuous galvanizing baths”, Proceedings of the 3rd international conference on Zn and Zn alloy coated steel sheet, Chicago, IL, USA, September 17-21, 777-782 (1995).
30. N. Y. Tang, “Modeling Al enrichment in galvanized coatings”, Metall. Mater. Trans. A, 26A (1995) 1699-1704.
31. M. Isobe, “Initial alloying behavior in galvannealing process”, CAMP-ISIJ, 5 (1992) 1629.
32. M. L. Giorgi, J. B. Guillot, “Theoretical model of the interfacial reactions between solid iron and liquid zinc-aluminium alloy”, J. Mater. Sci., 40 (2005) 2263.
33. Baril, Eric, G. L. Esperance, “Studies of the morphology of the Al-rich interfacial layer formed during the hot dip galvanizing of steel sheet”, Metall. Mater. Trans. A, 30 (1999) 681-695.
34. L. Chen, R. Fourmentin, J. R. Mc Dermid, “Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing”, Metall. Mater. Trans. A, 39 (2008) 2128-2142.
35. M. Guttmann, “Diffusive phase transformation in hot dip galvanizing”, Mater. Sci. Forum, 155 (1994) 527-548.
36. N. Gao, Y. H. Liu, N. Y. Tang, R. Park, M. S. Kim, “Optimizing bath Al level for improved galvanizability of advanced high strength steels”, Proceedings of the 8th international conference on Zn and Zn alloy coated steel sheet, Genova, Italy, June 21-24, article 02 (2011).
37. E. M. Bellhouse, J. R. Mc Dermid, “Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels”, Mater. Sci. Eng. A, 491 (2008) 39-46.
38. E. Mc Devitt, Y. Morimoto, M. Meshii, “Characterization of the Fe-Al interfacial layer in a commercial hot-dip galvanized coating”, ISIJ Int., 37 (1997) 776-782.
39. R. Kavitha, A. Mertens, J. R. Mc Dermid, “On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths”, Proceedings of the 9th international conference on Zn and Zn alloy coated steel sheet, Beijing, China, September 23-27, article 153 (2013).
40. P. Drillet, Z. Zermount, D. Bouleau, J. Mataigne, S. Claessens, “Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing, and steel/Zn reactivity”, Proceeding of the 6th international conference on Zn and Zn alloy coated steel sheet, Chicago, IL, USA, April 4-7, 1123-1134 (2004).
41. R. Khondlker, A. Mertens, J. R. Mc Dermid, “Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel”, Mater. Sci. Eng. A, 463 (2007) 157-165.
42. Y. F. Gong, T. J. Song, H. S. Kim, J. H. Kwak, B. C. De Cooman, “Proceedings of the asia pacific galvanizing conference”, Jeju, Korea, paper no. B15 (2009).
43. L. Cho, S. J. Lee, M. S. Kim, Y. H. Kim, B. C. De Cooman, “Influence of gas atmosphere dew point on the selective oxidation and the reactive wetting during hot dip galvanizing of CMnSi TRIP steel”, Metall. Mater. Trans. A, 44 (2013) 362.
44. K. K. Wang, C. W. Hsu, L. Chang, D. Gan, K. C. Yang, “Role of Al in Zn bath on the formation of the inhibition layer duringhot-dip galvanizing for a 1.2Si-1.5Mn transformation-inducedplasticity steel”, App. Surf. Sci., 285P (2013) 458-468.
45. Y. F. Gong, B. C. De Cooman, “Influence of the oxidation-reduction process on the surface and sub-surface microstructure of intercritically annealed CMnSi TRIP steel”, ISIJ Int., 51 (2011) 630-637.
46. Y. I. Choi, E. S. Shin, K. Kuroda, M. Okido, C. J. Park, “Improved surface morphology and corrosion resistance for galvannealed coatings by pre-electroplating iron”, Corros. Sci. 58 (2012) 152-158.
47. Y. Tobiyama, S. Fujita, T. Maruyama, “Improvement of galvanizability of silicon-bearing steel by electrodeposited iron coating containing oxygen”, ISIJ Int., 52 (2012) 115-120.
48. N. Zhong, K. Zhang, J. Li, W. B. Hu, “Improvement of the galvanized coating quality of high strength dual phase steels by pre-electroplating nickel layer”, Steel Research Int., 82. 3 (2011) 180-186.
49. J. Bockris, D. M. Drazic, “Electro-chemical science”, first ed., Taylor and Francis, London, 1972.
50. D. A. Porter, K. E. Easterling, M. Y. Sherif, “Phase transformations in metals and alloys”, third ed., Taylor and Francis, Boca Raton, London, New York, 2009.
51. G. Neumann, C. Tuijn, “Self-diffusion and impurity diffusion in pure metals”, first ed., Oxford, 2009.
52. K. Morsi, “Review: reaction synthesis processing of Ni-Al intermetallic materials”, Mater. Sci. Eng. A, 299 (2001) 1-15.
53. G. P. Purja Pun, Y. Mishin, “Development of an interatomic potential for the Ni-Al system”, Philos. Mag., 89 (2009) 3245-3267.
54. G. P. Vassilev, G. A. Tomas, J. C. Tedenac, “Thermodynamic optimization of the Ni-Zn system”, J. Phase Equilib., 21. 3 (2000) 287-301.
55. P. Nash, Y. Y. Pan, “The Ni-Zn (Nickel-Zinc) System”, J. Phase Equilib., 8. 5 (1987) 422-430.
56. 許瓊文。極低碳鋼與雙相鋼之熱浸鍍鋅鐵鋁阻障層成長動力學研究,國立中山大學材料與光電科學學系碩士學位論文,(2011)。
57. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, “Handbook of X-ray photoelectron spectroscopy”, Eden Prairie, Minnesota, 1979.
58. P. Wu, G. Eriksson, A. D. Pelton, “Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-FeO, CaO-MgO, CaO-MnO, FeO-MgO, FeO-MnO, and MgO-MnO systems”, J. Am. Ceram. Soc., 76 (1993) 2065-2075.
59. V. Raghavan, “Al-Fe-Ni (Aluminum-Iron-Nickel)”, J. Phase Equilib., 31. 5 (2010) 455-458.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code