Responsive image
博碩士論文 etd-0729117-125005 詳細資訊
Title page for etd-0729117-125005
論文名稱
Title
太陽光伏發電系統之區域分散式虛功率控制
Regional Decentralized Reactive Power Control for Photovoltaic Generation Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-23
繳交日期
Date of Submission
2017-08-29
關鍵字
Keywords
太陽光伏發電系統、虛功率控制、智慧逆變器、IEC 61850、通用物件導向變電所事件
Reactive Power Control, Smart Inverter, IEC 61850, Generic Object-oriented Substation Events, Photovoltaic Generation System
統計
Statistics
本論文已被瀏覽 5713 次,被下載 73
The thesis/dissertation has been browsed 5713 times, has been downloaded 73 times.
中文摘要
大量太陽光伏發電系統在饋線併網時,可能會造成饋線電壓驟變,進而影響供電品質,故需要藉由控制策略來穩定電壓。目前已發展之太陽光伏發電系統電壓控制策略有固定功率因數法、固定無效功率法、虛功率對電壓特性法等,這些控制策略係利用智慧逆變器針對所屬的太陽光伏發電系統之虛功率進行控制。當饋線上有多處匯流排裝設太陽光伏發電系統且電壓升高時,若所有逆變器同時進行虛功率控制,可能形成電壓擺動的現象,進而加劇饋線電壓驟變。
本論文提出一太陽光伏發電系統之區域分散式虛功率控制,所發展之控制策略將逆變器作為一智慧電子裝置,利用IEC 61850通訊協定之通用物件導向變電所事件(Generic Object-oriented Substation Events, GOOSE),於饋線區域內分散地交換各逆變器的電力資訊,再利用本文所推導出的虛功率對電壓變動之靈敏度關係式,進行虛功控制。所提控制策略最大的特點在於區域內各太陽光伏發電系統可分散且個別地進行控制,其於虛功率控制前先進行電力資訊的交換,溝通協調後由過電壓最高者優先進行調整,接著重新計算各太陽光伏發電系統電壓以決定是否進行下一次調整,直至所有太陽光伏發電系統電壓低於上限為止。本論文所提之區域分散式虛功率控制策略不但可有效避免逆變器同時作動之電壓驟變,更可有效避免所造成的電壓品質問題。
Abstract
A large number of Photovoltaic Generation Systems (PVGSs) interconnected to a distribution feeder may cause the sudden change of feeder voltages and further affect the power supply quality. Therefore, control strategies need to be designed to stabilize the feeder voltages. The commonly used control strategies include fixed power factor method, fixed reactive power method, voltage and reactive power method and so on. These control strategies use smart inverter to control the reactive power of the PVGS to which it belongs. However, when there are several PVGSs installed at different buses of a feeder, all the smart inverters operated at the same time due to over voltages may cause the phenomenon of voltage swing and therefore increase the sudden change of feeder voltages.
A regional decentralized reactive power control for PVGSs is proposed in this thesis. With the proposed control strategy, an inverter is treated as an Intelligent Electronic Device (IED) and IEC 61850 and Generic Object-oriented Substation Events (GOOSE) are integrated into the inverter. Decentralized power information exchanges of PVGSs in a region of the feeder can then be realized. The sensitivity relations between reactive powers and bus voltages are also derived in this thesis to accomplish reactive power control. The specific characteristic of proposed control strategy is that the PVGSs in a region can be controlled in a decentralized manner. The power information exchanges are carried out before the reactive power control. After the communication was coordinated and power information was exchanged by GOOSE, the reactive power of PVGS inverter with the maximum over voltage will be adjusted. The voltages of regional PVGSs will be recalculated to decide whether to execute the next adjustment. The procedure will continue until the voltages of all PVGSs are under the upper voltage limit. The regional decentralized reactive power control strategy proposed in this thesis cannot only prevent the sudden change of feeder voltages due to the inverters operated at the same time, but also avoid the voltage quality problem caused by PVGSs.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xi
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 3
1.3 本文章節概要 6
第二章 太陽光伏發電系統之區域分散式虛功率控制 7
2.1太陽光伏併網規範與控制 7
2.1.1 太陽光伏併網衝擊 7
2.1.2 智慧逆變器(Smart Inverter)與控制 8
2.1.3 太陽光伏發電系統併網控制 10
2.2 區域分散式虛功率控制 14
2.2.1 匯流排注入電流對線路電流矩陣 14
2.2.2 線路電流對匯流排電壓矩陣 16
2.2.3虛功率對電壓變動之靈敏度關係式推導 17
第三章 IEC 61850 通訊協定簡介與開發 22
3.1 IEC 61850 通訊協定簡介 22
3.1.1 IEC 61850 通訊協定概述 22
3.1.2 IEC 61850 通訊協定邏輯節點與資料模型 25
3.2 通用物件導向變電所事件 28
3.2.1 通用物件導向變電所事件簡介 28
3.2.2通用物件導向變電所事件控制區塊 29
3.3 資料模型與應用 31
3.3.1 IED描述配置 31
3.3.2資料模型設計 33
3.3.3 GOOSE控制區塊及其通訊設定 35
3.4結合GOOSE之太陽光伏發電系統區域分散式虛功率控制策略 38
第四章 實驗架構與模擬結果 43
4.1實驗模擬架構 43
4.2 既有控制策略電壓問題 48
4.3 GOOSE通信驗證及軟體架構驗證 52
4.3.1 資料結構驗證 52
4.3.2 GOOSE通信驗證 55
4.4 單一照度控制結果 58
4.5 變動照度控制結果 65
第五章 結論與未來研究方向 70
5.1 結論 70
5.2未來研究方向 71
參考文獻 72
參考文獻 References
[1] 楊士賢,“太陽光伏逆變器之非集中式電壓解耦控制以抑制配電系統之壓升”,國立中山大學,中華民國103年。
[2] Rheatsao,綠能趨勢網,“法國研究:日本太陽能超越德國,居全球第二”,網路來源:http://pv.energytrend.com.tw/news/20170609-14307992.html,民國106年6月9日。
[3] Renewable Energy Policy Network for the 21st Century (REN21), “RENEWABLES 2017 GLOBAL STATUS REPORT,” 2017.
[4] 黃耀瑋,新電子科技雜誌,“加入聯網功能,智慧逆變器搶屋頂型PV商機",網路來源:http://www.mem.com.tw/arti.php?sn=1206220020,民國101年6月25日。
[5] Delilah Lin,綠能趨勢網,“德國擔再生能源發電領頭羊,供電比例最高85%",網路來源:http://pv.energytrend.com.tw/news/20170511-14307900.html,民國106年5月11日。
[6] Rheatsao,綠能趨勢網,“小型系統發威,德2016年12月太陽能裝機量超過440MW",網路來源:http://pv.energytrend.com.tw/news/20170202-14307496.html,民國106年2月2日。
[7] 黃郁文、黃渡根、陳彥均、彭兆川、楊凱平,“國內外再生能源發電系統併網規範研討",中華技術專題報導,台灣世曦工程顧問股份有限公司,民國103年11月。
[8] B. Craciun, T. Kerekes, D. Sera and R. Teodorescu, “Control of Grid Connected PV Systems with Grid Support Functions”, Project group PED4/ 1043, Department of Energy Technology - Pontoppidanstræde 101, Aalborg University, Denmark, 9-10th Semester 2011/2012.
[9] Paul Brucke, , Issue 7.4, SolarPro “Reactive Power Control in Utility-Scale PV," Available at: http://solarprofessional.com/articles/design-installation/reactive-power-control-in-utility-scale-pv#.WW95q29EmUk , Jun/Jul, 2014.
[10] M. McGranaghan, T. Ortmeyer, D. Crudele, T. Key, J. Smith, P. Barker, “Renewable Systems Interconnection Study : Advanced Grid Planning and Operations", SANDIA REPORT SAND2008-0944 P, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, Feb. 2008.
[11] 台灣電力公司,“台灣電力股份有限公司再生能源發電系統併聯技術要點(草案)",民國106年。
[12] Kathie Zipp, Solar Power World, “What Is A Smart Solar Inverter?," Available at: https://www.solarpowerworldonline.com/2014/01/smart-solar-inverter/ , Jan 10. 2014.
[13] R. Edge, B. York and N. Enbar, “Rolling Out Smart Inverters: Assessing Utility Strategies and Approaches”, Solar Electric Power Association, Electric Power Research Institute, Nov. 2015.
[14] Smart Inverter Working Group, “Recommendations for Updating the Technical Requirements for Inverters in Distributed Energy Resources," California Public Utilities Commission, Jan. 2014.
[15] E. L. da Silva, A. M. N. Lima, M. B. R. Corrêa, M. A. Vitorino and L. Barbosa﹐ “A New Centralized Active and Reactive Power Control Strategy for Voltage Regulation in Power Distribution Networks with High Penetration of Photovoltaic Generation,” in Proc IEEE ICHQP, Belo Horizonte, pp. 823-828, Oct. 2016.
[16] P. Martí, M. Velasco, J. M. Fuertes, A. Camacho, J. Miret and M. Castilla, “Distributed reactive power control methods to avoid voltage rise in grid-connected photovoltaic power generation systems,” in Proc IEEE ISIE, Taipei, pp. 1-6, May. 2013.
[17] K. Kawabe and K. Tanaka, “Effect of Reactive Power Control by Photovoltaic Power Generation on Short-Term Voltage Stability,” in Proc IEEE PowerTech, Eindhoven, pp. 1-6, July. 2015.
[18] M. Velasco, P. Martí, J. T. Martínez, J. Miret and M. Castilla, “On the Optimal Reactive Power Control for Grid-Connected Photovoltaic Distributed Generation Systems,” in Proc IEEE IECON, Yokohama, pp. 003755-003760, Nov. 2015.
[19] A. R. Malekpour and A. Pahwa, “Reactive Power and Voltage Control in Distribution Systems with Photovoltaic Generation,” in Proc IEEE NAPS, Champaign, IL, pp. 1-6, Sept. 2012.
[20] H. Xu, J. Xie, X. Zheng, W. Liu and X. Han, “Voltage control strategies affecting maximum power generation of photovoltaic generation in distribution network,” in Proc IEEE IREC, Hammamet, pp. 1-6, March. 2016.
[21] C. S. Gehrke, A. M. N. Lima and A. C. Oliveira, “Smart control for active power generation, voltage level and harmonic content based on photovoltaic generators,” in Proc IEEE ECCE, Montreal, QC, pp. 4594-4601, Sept. 2015.
[22] K. M. L. Prasanna, R. J. R. Kumar, A. Jain and J. Somlal, “Optimal reconfiguration of radial distribution system having photovoltaic distributed generation with controlled voltage,” in Proc IEEE ICCPCT, Nagercoil, pp. 1-6, March. 2015.
[23] X. Yang, W. Wang and W. Jin, “The influence and control measures of distributed photovoltaic generation on the voltage in distribution system,” in Proc IEEE CICED, Shanghai, pp. 1-4, Sept. 2012.
[24] M. Watanabe, K. Matsuda, T. Futakami, K. Yamane and R. Egashira, “Control method for voltage regulator based on estimated amount of photovoltaic generation power,” in Proc IEEE CICED, Shanghai, pp. 1-4, Sept. 2012.
[25] K. D. Brabandere, B. Bolsens, J. V. D. Keybus, A. Woyte, J. Driesen, R. Belmans, “A Voltage and Frequency Droop Control Method for Parallel Inverters,” IEEE Transactions on Power Electronics, vol. 22, no.4, pp. 1107-1115, Jul. 2007.
[26] J. H. Teng, “A Direct Approach for Distribution System Load Flow Solutions,” IEEE Trans. on Power Delivery, Vol. 18, Issue: 3, pp. 882 -887, Jul. 2003.
[27] 鄧人豪,”利用線路電流為變數之不平衡配電系統線性最佳虛功控制(II)”,90年度國科會成果報告(NSC 89-2218-E-214-016 )。
[28] 王奕翔,“以IEC 61850通訊協定為基礎之IED監控及GOOSE互操作性測試分析之研究”,高苑科技大學,中華民國100年。
[29] 陳冠文,"先進讀表基礎設施中資料收集器之加值功能設計與開發",國立中山大學,中華民國105年。
[30] International Electrotechnical Commission, “IEC 61850 Communication Networks and Systems in Substations", 2003.
[31] VMware Inc , “VMware Workstation Player,” Available at: https://www.vmware.com/tw/products/workstation.html
[32] 吳耀庭,“AEG-200 實作教學”,資訊工業策進會,2014。
[33] Retronix Technology Inc, Available at: http://www.retronix.com.tw/product_aeg200.html
[34] OMICRON, Available at: https://www.omicronenergy.com/en/company/
[35] Wireshark, Available at: https://www.wireshark.org/
[36] Wikipedia, “Abstract Syntax Notation one,” Available at: https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One#Encodings
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code