Responsive image
博碩士論文 etd-0729117-152514 詳細資訊
Title page for etd-0729117-152514
論文名稱
Title
可切換極性之返馳式電池電量平衡電路
A Polarity-Switched Flyback Conversion Circuit for Battery Charge Equalization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-21
繳交日期
Date of Submission
2017-09-06
關鍵字
Keywords
電量平衡、磷酸鋰鐵電池、返馳式轉換器、定電流定電壓充電法、開關陣列、電池電量狀態
Charge equalizer, Flyback converter, Arrayed switches, Constant–current constant-voltage (CC-CV) charging method, Lithium iron phosphate battery, State-of-charge (SOC)
統計
Statistics
本論文已被瀏覽 5704 次,被下載 32
The thesis/dissertation has been browsed 5704 times, has been downloaded 32 times.
中文摘要
本論文提出電池串聯應用之電量平衡電路,此電路包含一等化開關陣列與可切換極性之返馳式轉換器。透過開關陣列的切換,可選擇電量狀態(State-of-Charge, SOC)最低的電池為目標電池,經由轉換器調節充電功率,平衡電池間的電量差異。充電平衡過程中分為標準充電、低電流偵測及個別充電三個階段,量測有載電壓,估測電池的SOC,並採定電流-定電壓(Constant-Current Constant-Voltage, CC-CV)充電法。在前兩個階段,輪流執行偵測模式與平衡模式。在偵測模式中,以相同的充電電流偵測有載電壓,找出目標電池;然後在電量平衡模式中,將目標電池充入較大的電流,以縮小電量差異。當串聯電池中任一電池電壓達CV電壓時,則切斷串聯充電路徑,依序對電池進行CC-CV充電。
本文以四顆磷酸鋰鐵電池芯進行實驗。實驗結果顯示,本文所提出的電量平衡方法,在大多實際應用情況,可於執行標準充電階段後,有效縮小各電池間的電量差異。另外,採低電流偵測,可延緩充電電壓上升速度,延長電量平衡時間,將電量差異再次縮小。最終執行個別充電,即使在電量極端不平衡的情況下,亦可將所有電池充至滿電量。
Abstract
The thesis proposes a charge equalizer with a polarity-switched flyback converter and the arrayed switches for batteries connected in series. By exchanging the arrayed switches, the charger equalizer can select the target battery, which is with the lowest state-of-charge(SOC). The flyback converter utilizes the full power from charger and at the same time allocate a relatively high current to the target battery. The balance charging scheme employs the constant-current constant-voltage(CC-CV) charging method and estimates the batteries’ SOCs by the loaded voltage method. The balance charging process is accomplished by a regular charging stage, a low-current detection stage, and eventually an individual charging stage. In the first two stages, the balance charging is performed alternately by a detection mode to select a target battery and then a balancing mode to charge it with relatively large current. At the individual charging stage, the series charging current path is cut off and the charge equalizer charges the batteries one by one with CC-CV charging method.
Experiment tests are carried out on a battery power bank consisting of four serial lithium iron phosphate batteries with the proposed charge equalizer. Experiment results have shown that the charge imbalance can be effectively reduced after the regular charging stage for most practical cases. With a lower detection current, the balance charging period can be extended to further alleviate the SOC difference among the serial batteries. Eventually, all batteries can be charged to their full capacities with individual charging, even if they are initially with extreme imbalance.
目次 Table of Contents
目錄
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vi
表目錄 viii
第一章 簡介 1
1-1 研究背景與動機 1
1-2 論文大綱 3
第二章 電池應用概述 4
2-1 鋰離子電池介紹 4
2-2 電池電量平衡 6
2-3 電池電量估測法 9
第三章 電池電量平衡電路 11
3-1 等化開關陣列 11
3-2 可切換極性之返馳式轉換器 13
3-3 平衡電路之工作狀態 15
3-4 充電平衡策略 18
第四章 實例驗證 20
4-1 實驗參數設定 20
4-2 充電實驗 22
第五章 結論與未來研究方向 37
5-1 結論 37
5-2 未來研究方向 38
參考文獻 39
參考文獻 References
[1] M.Ombra, F. Di Noto, J. Jaffrain, S. Lansburg, and J. Brunarie, “Hybrid power systems deliver efficient energy management for off-grid BTS sites,” in Proc. IEEE INTELEC, pp. 1–7, Oct. 2012.
[2] H. F. Dai, X. L. Zhang, W.J. Gu, X.H. Wei, and Z.H. Sun, “A semi-empirical capacity degradation model of EV li-ion batteries based on Eyring equation,” in Proc. IEEE VPPC, pp. 1–5, Oct. 2013.
[3] A. I. Stan, M. Swierczynski, D. I. Stroe, R. Teodorescu, S. J. Andreasen, and K. Moth, “A comparative study of lithium ion to lead acid batteries for use in UPS applications,” in Proc. IEEE INTELEC, pp. 1–8, Oct. 2014.
[4] J. P. Cornu, “High performance storage battery on board of unmanned untethered submersible vehicles,” in Proc. IEEE UUST, pp. 216-235, June. 1989.
[5] A. M. Bradley, M. D. Feezor, H. Singh, and F. Yates Sorrell, “Power systems for autonomous underwater vehicles,” IEEE Trans. on Oceanic Engineering, vol. 26, no. 4, pp. 526-538, Oct. 2001.
[6] T. Hyakudome, H. Yoshida, S. Ishibashi, and T. Sawa and M. Nakamura, “Development of advanced Lithium-ion battery for underwater vehicle,” in Proc. IEEE SSC, pp. 1-4., May. 2011.
[7] C. Pascual and P. T. Krein, “Switched capacitor system for automatic series battery equalization,” in Proc. IEEE APEC, vol. 2, pp. 848-854, Feb. 1997.
[8] 歐陽文億,“串聯電池組雙向電量平衡電路”,國立中山大學電機工程研究所碩士論文,2005年6月。
[9] J. Cao, N. Schofield, and A. Emadi, “Battery balancing methods: A comprehensive review,” in Proc. IEEE VPPC, pp. 1-6, Sep. 2008.
[10] T. A. Stuart and W. Zhu, “Fast equalization for large lithium ion batteries,” IEEE Aerospace and Electronic Systems Magazine, vol. 24, pp. 27-31, July. 2009.
[11] A. Mirzaei, A. Jusoh, Z. Salam, E. Adib, and H. Farzanehfard, “A novel soft switching bidirectional coupled inductor Buck-boost converter for battery discharging-charging,” in Proc. IEEE IAPEC, pp. 195-199, Apr. 2011.
[12] M. Y. Kim, J. W. Kim, C. H. Kim, S. Y. Cho, and G. W. Moon, “Automatic charge equalization circuit based on regulated voltage source for series connected lithium-ion batteries,” in Proc. IEEE ICPE & ECCE, pp. 2248-2255, May/June. 2011.
[13] M. Y. Kim, C. H. Kim, S. Y. Cho, and G. W. Moon, “A cell selective charge equalizer using multi-output converter with auxiliary transformer,” in Proc. IEEE ICPE & ECCE, pp. 310-317, May/June. 2011.
[14] Y. Yuanmao, K. W. E. Cheng, and Y. P. B. Yeung, “Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string,” IEEE Trans. on Power Electronics, vol. 27, no. 7, pp. 3234-3242, July. 2012.
[15] T. H. Phung, J. C. Crebier, and Y. Lembeye, “Voltage balancing converter network for series-connected battery stack,” in Proc. IEEE IECON, pp. 3007-3013, Dec. 2012.
[16] 簡振宇,“串聯降昇壓式電池電源模組充電策略”,國立中山大學電機工程研究所碩士論文,2013年4月。
[17] C. H. Kim, M. Y. Kim, and G. W. Moon, “A modularized charge equalizer using a battery monitoring IC for series-connected li-ion battery strings in electric vehicles,” IEEE Trans. on Power Electronics, vol. 28, no. 8, pp. 3779-3787, Aug. 2013.
[18] R. Fukui and H. Koizumi, “Double-tiered switched capacitor battery charge equalizer with chain structure,” in Proc. IEEE IECON, pp. 6715-6720, Nov. 2013.
[19] 張舉申,“具人機介面之降昇壓式電池電源模組並聯充電”,國立中山大學電機工程研究所碩士論文,2014年7月。
[20] M. Uno and A. Kukita, “Bidirectional PWM converter integrating cell voltage equalizer using series-resonant voltage multiplier for series-connected energy storage cells,” IEEE Trans. on Power Electronics, vol. 30, no. 6, pp. 3077-3090, June 2015.
[21] Y. Yu, R. Saasaa, and W. Eberle, “A series resonant circuit for voltage equalization of series connected energy storage devices,” in Proc. IEEE APEC, pp. 1286-1291, Mar. 2016.
[22] K. M. Lee, S. W. Lee, Y. G. Choi, and B. Kang, “Active balancing of li-ion battery cells using transformer as energy carrier,” IEEE Trans. on Industrial Electronics, vol. 64, no. 2, pp. 1251-1257, Feb. 2017.
[23] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. on Power Electronics, vol. 32, no. 3, pp. 2133-2145, Mar. 2017.
[24] P. Sabine, P. Marion, and A. Jossen, “Method for state-of-charge determination and their applications,” Journal of Power Sources, vol. 96, No. 1, pp. 113-120, June 2001
[25] S. J. Huang, B. G. Huang, and F. S. Pai, “An approach to measurements of electrical characteristics of lithium-ion battery with open-circuit voltage function,” IET Power Electronics, vol. 5, no. 9, pp. 1968-1975, Nov. 2012.
[26] T. Gallien and G. Brasseur, “State of charge estimation of a LiFePO4 battery: A dual estimation approach incorporating open circuit voltage hysteresis,” in Proc. IEEE I2MTC, pp. 1-6, May. 2016.
[27] D. H. Vega, S. Kelouwani, and L. Boulon, “Efficient internal resistance and specific heat identification of li-ion battery at low temperature conditions,” in Proc. IEEE VPPC, pp. 1-6, Oct. 2015.
[28] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007年6月。
[29] I. Baccouche, A. Mlayah, S. Jemmali, B. Manai, and N. Essoukri Ben Amara, “Implementation of a coulomb counting algorithm for SOC estimation of li-ion battery for multimedia applications,” in Proc. IEEE SSD15, pp. 1-6, Mar. 2015.
[30] T. H. Wu, J. K. Wang, C. S. Moo, and A. Kawamura, “State-of-charge and state-of-health estimating method for lithium-ion batteries,” in Proc. IEEE COMPEL, pp. 1-6, Sep. 2016.
[31] A. Eddahech, O. Briat, and J. M. Vinassa, “Real-time SOC and SOH estimation for EV li-ion cell using online parameters identification,” in Proc. IEEE ECCE, pp. 4501-4505, Sep. 2012.
[32] 台灣立凱電能科技股份有限公司. (2013 Aug 22). 鋰電池相較其他化學儲能電池的競爭優勢[Online]. Available: http://aleees.com/tw
[33] I. Buchmann, Batteries in a portable world -A handbook on rechargeable batteries for non-engineers, 3rd ed. Richmond, BC, Canada: Cadex Electronics Inc, 2011.
[34] C. H. Kim, Y. D. Kim, G. W. Moon, and H. S. Park, “Individual cell voltage equalizer using selective two current paths for series connected li-ion battery strings,” in Proc. IEEE ECCE, pp. 1812-1817, Sep. 2009.
[35] Y. C. Hsieh, C. S. Moo, I. S. Tsai, and J. C. Cheng, “Dynamic charge equalization for series-connected batteries,” in Proc. IEEE ICIT, vol.1, pp. 444-449, Apr. 2003.
[36] 李建華,“電池電源模組建構之儲釋能系統”,國立中山大學電機工程研究所碩士論文,2015年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code