Responsive image
博碩士論文 etd-0729118-132832 詳細資訊
Title page for etd-0729118-132832
論文名稱
Title
利用磷酸提取集塵灰中氧化鋁回收之可行性
Feasibility of using phosphoric acid for extraction of aluminum oxide from furnace dust
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-29
關鍵字
Keywords
集塵灰、氧化鋁、酸洗法、磷酸、反應時間、溫度
Aluminium-containing ash, Aluminium oxide, Reaction time, Phosphoric acid, Acid process, Temperature
統計
Statistics
本論文已被瀏覽 5638 次,被下載 0
The thesis/dissertation has been browsed 5638 times, has been downloaded 0 times.
中文摘要
再生鋁產業中,以廢鋁熔煉比例較高,國內熔煉過程所產生的產出鋁集塵灰及鋁渣,每年產出超過十萬噸以上,鋁集塵灰主要成分為顆粒細小的金屬鋁、氧化鋁、氮化鋁及碳化鋁,若能有效回收或再利用鋁集塵灰,提昇鋁集塵灰中的鋁回收率,增加以氧化鋁作為資源化產品,將可減少廢棄物處理所需之掩埋場地及費用,且若有效提高氧化鋁產品純度,將可進一步提高資源化產品的附加價值。本研究以有效提取集塵灰中氧化鋁為目標並參考酸性法(Acid process),選用酸性較弱的磷酸配合適當溫度與時間之鍛燒,以產物中氧化鋁濃度與回收率為基準,研究目的包含分析:a)過濾步驟在以水溶出集塵灰中鋁之方法之影響;b)不同集塵灰與水之重量比在水溶出集塵灰中鋁之方法之影響;c)集塵灰與磷酸之不同重量比在氫氧化鈉溶出集塵灰中鋁之方法之影響;d)在氫氧化鈉溶出集塵灰中鋁之方法中,於不同集塵灰與磷酸之重量比條件下,添加不同質量之氫氧化鈉與磷酸之影響;e)攪拌方式之影響;以及f)總結所有數據,分析使用磷酸進行酸性法提取鋁集塵灰中氧化鋁之可行性。
研究過程中以添加與鋁集塵灰不同重量固液比之磷酸、反應後鹼添加量比較、煅燒與攪拌方法比較,配合適當溫度與時間進行酸性法。實驗結果顯示,氧化鋁多保留於與磷酸反應煅燒後固體殘渣中,鋁集塵灰與磷酸反應後,磷酸鋁不溶於水的特性,需以添加鹼方式溶出氧化鋁。取上澄液煅燒方式,與固體殘渣相互比較,可得知其氧化鋁皆保留於固體殘渣中,回收率約70%至接近90%。與磷酸反應煅燒後固體殘渣中五氧化二磷比例較低,以含量比較,氧化鋁含量明顯比上澄液中氧化鋁含量較高,且固體殘渣中氧化鋁含量皆比未固液分離氧化鋁含量高、另以回收率比較,可得知未固液分離仍保留氧化鋁全量。以攪拌方式,可得知高溫煅燒可使酸浸過程氧化鋁溶出效果較佳。以成品中氧化鋁含量最高為標準,最佳操作參數為取集塵灰2克,與磷酸重量固液比1:0.49,以275℃煅燒2.5小時,加入氫氧化鈉1.2克後再於85℃反應0.5小時,以滴管將其固液分離,僅取固體殘渣將其燒乾,此方法成品中氧化鋁含量59.6 %以及整體方法回收率為97.5 %。以成品中回收率最高為標準,最佳實驗操作參數為取集塵灰2克,與磷酸重量固液比1:0.49,以275℃煅燒2.5小時,加入氫氧化鈉0.8克後於85℃反應0.5小時,未固液分離,將其燒乾,以此方法可得到成品中氧化鋁含量36.7 %以及整體方法回收率為106.6 %。但氧化鋁及五氧化二磷以外雜質皆有明顯降低,五氧化二磷若能有效去除,以磷酸提取氧化鋁仍有發展技術的空間。
Abstract
Aluminum smelting is one critical process in the aluminum-regeneration industries. In Taiwan, the production of aluminum-containing dusts produced by smelting exceeds 100,000 tons/year. The principal constituents in aluminum-containing dusts include metal aluminum, aluminum oxide, aluminum nitride, and aluminum carbide. By effectively recycling and reusing aluminum-containing dusts, elevating the aluminum recovery of the processes, and increasing the feasibility of producing aluminum oxide-containing produces, the land area and cost needed for the aluminum-containing solid waste treatments can be critically reduced, simultaneously increasing the value of the end-point products. The objective of this study was to study the effectiveness and efficiency of extracting aluminum from the aluminum-containing dusts by using the acid process with phosphoric acid, with respect to the effects of temperature and time for calcination. The sub-topics are to test: a) the effect of filtration on the recovery and concentration of aluminum oxide in the products when water was used for aluminum dissolution; b) the effect of solid-to-water mass ratio on the recovery and concentration of aluminum oxide in the products when water was used for aluminum dissolution; c) the effect of solid-to-sodium hydroxide mass ratio on the recovery and concentration of aluminum oxide in the products when sodium hydroxide was used for aluminum dissolution; d) the effect of the solid-to-sodium hydroxide mass ratio and the amount of sodium hydroxide on the recovery and concentration of aluminum oxide in the products when sodium hydroxide was used for aluminum dissolution; e) the effect of different stirring approaches on the recovery and concentration of aluminum oxide in the products; and f) the feasibility of using phosphoric acid for extraction of aluminum oxide from aluminum-containing ashes.
In the results, aluminum oxide was mostly present in the solid residue after the reactions. Given the low solubility of aluminum, the addition of base is inevitable for dissolution of aluminum oxide. The recovery of aluminum oxide in the solid residue ranged from 70% to 90%, suggesting that most of the aluminum oxide was still present in the solid residue instead of the supernatant. The performance of this extraction process was better when high-temperature calcination was used for aluminum dissolution with phosphoric acid. To reach the highest aluminum oxide content in the products, the optimal parameters are as follows: 2 g of aluminum-containing ash was collected. The solid-to-phosphoric acid mass ratio was 1 to 0.49. The calcination temperature and time were 275℃ and 2.5 hr, respectively. 1.2 g of sodium hydroxide was added and the reaction was maintained at 85℃ for 0.5 hr. The solid and solution were separated, followed by drying the solid residue at a high temperature. The concentration and recovery of aluminum oxide in the product through this approach were 59.6% and 97.5%, respectively. To reach the highest aluminum oxide recovery, the optimal parameters are as follows: 2 g of aluminum-containing ash was collected. The solid-to-phosphoric acid mass ratio was 1 to 0.49. The calcination temperature and time were 275℃ and 2.5 hr, respectively. 0.8 g of sodium hydroxide was added and the reaction was maintained at 85℃ for 0.5 hr. The solid and solution were not separated, followed by drying the solid residue at high temperature. The concentration and recovery of aluminum oxide in the product through this approach were 36.7% and 106.6%, respectively. In the future study, the effective and efficient removal of the phosphor from the final product is the key to develop this extraction technology.
目次 Table of Contents
摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機及目的 3
第二章 文獻回顧 5
2.1鋁 5
2.1.1鋁合金 7
2.1.2金屬鋁製品製造業及產品 8
2.1.3氧化鋁 9
2.2鋁冶煉方法 10
2.2.1拜耳法(Bayer process) 10
2.2.2霍爾-埃魯法(Hall–Héroult process) 12
2.2.3鋁回收再生技術 12
2.3煉鋁爐渣回收再生之經濟效益 13
2.3.1鋁渣之來源 14
2.3.2 鋁渣水解反應 15
2.3.3國內鋁集塵灰處理方式 16
2.3.4鋁渣對環境造成之影響 18
2.4鋁集塵灰之回收技術 19
2.4.1煅燒法(Sintering processes) 19
2.4.2 水化學法(Hydro-chemical process) 20
2.4.3酸性法(Acid process) 21
2.4.4其他特殊方法 22
2.5磷酸 23
2.5.1 五氧化二磷 24
第三章 研究方法 25
3.1實驗架構 25
3.2 實驗步驟與流程 26
3.2.1 第一階段實驗流程 26
3.2.2 第二階段實驗流程 27
3.2.3 第三階段實驗流程 28
3.2.4 第四階段實驗流程 29
3.2.5 第五階段實驗流程 30
3.3 實驗材料與藥劑 31
3.3.1 樣品來源 31
3.3.2 實驗試劑與器材 32
3.4 實驗分析儀器 33
3.4.1 X-光螢光分析儀(X-ray Fluorescence Spectrometer,XRF) 33
3.4.2 X-光繞射儀(X-ray Diffractor,XRD) 35
3.4.3 環境掃描式電子顯微鏡(Environmental scanning electron microscope,ESEM) 36
3.5品質保證與品質管理(QA/QC) 37
3.6 氧化鋁回收率計算 38
第四章 結果與討論 39
4.1 鋁集塵灰之成份 39
4.2 X-射線螢光光譜儀(XRF)分析結果 41
4.2.1過濾方式對氧化鋁回收及含量之影響 41
4.2.2以水溶出及以鹼溶出對氧化鋁回收及含量之影響 44
4.2.3 不同重量固液比對氧化鋁回收及含量之影響 47
4.2.4 氫氧化鈉添加量對氧化鋁回收及含量之影響 50
4.2.5 磷酸添加量對氧化鋁回收及含量之影響 62
4.2.6以攪拌方式對氧化鋁回收及含量之影響 70
4.3 X-光繞射儀(XRD)分析結果 73
4.4環境掃描式電子顯微鏡(ESEM)分析結果 76
4.5以磷酸提取氧化鋁可行性 79
第五章 結論與建議 80
5.1 結論 80
5.2 建議 84
參考文獻 85
參考文獻 References
Aluminium for Future Generations(http://bauxite.world-aluminium.org/refining/process/)
Bai, G., Qiao, Y., Shen, B., & Chen, S. (2011). Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it. Fuel Processing Technology, 92(6), 1213-1219.
Campbell, T., Kalia, R. K., Nakano, A., Vashishta, P., Ogata, S., & Rodgers, S. (1999). Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Physical review letters, 82(24), 4866.
Chou, K. S., Kelmm, W. A., Murtha, M. J., & Burnet, G. (1975). Lime-sinter process for production of alumina from fly ash (No. IS-M-64; CONF-760322-1). Ames Lab., Iowa (USA); Iowa State Univ. of Science and Technology, Ames (USA).
Daviddarling - terrestrial abundance of elements.(http://www.daviddarling.info/encyclopedia/E/elterr.html)
Ding, J., Ma, S., Shen, S., Xie, Z., Zheng, S., & Zhang, Y. (2017). Research and industrialization progress of recovering alumina from fly ash: a concise review. Waste Management, 60, 375-387.
Ding, J., Ma, S., Zheng, S., Zhang, Y., Xie, Z., Shen, S., & Liu, Z. (2016). Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process. Hydrometallurgy, 161, 58-64.
Edzwald, J. K. (2010). Water Quality and Treatment A Handbook on Drinking Water. McGrawHill.
Hudson, L. K., Misra, C., Perrotta, A. J., Wefers, K., & Williams, F. S. (2000). Aluminum oxide. Ullmann's Encyclopedia of Industrial Chemistry.
Jesson Ko(2011)。鋁合金應用介紹 簡報,Laird Technologles
Li, L. S., Wu, Y. S., Liu, Y. Y., & Zhai, Y. C. (2011). Extraction of alumina from coal fly ash with sulfuric acid leaching method [J]. The Chinese Journal of Process Engineering, 2.
Lu, S., Fang, R. L., & Zhao, H. (2003). Study of recovery of highly pure super-fine powdered aluminum oxide from fly ash by way of lime sintered self powdering. Scientific Study, 1, 15-17.
Lv, Y. L., Chen, C. Y., & Mao, Z. H. (2013). Preparation of alumina from fly ash by sulfuric acid. In Advanced Materials Research (Vol. 734, pp. 1551-1554). Trans Tech Publications
Meier, M. S. (2001). Phosphorus (V) Oxide. Encyclopedia of Reagents for Organic Synthesis.
Padilla, R., & Sohn, H. Y. (1985). Sodium aluminate leaching and desilication in lime-soda sinter process for alumina from coal wastes. Metallurgical Transactions B, 16(4), 707-713.
Schmitz, C. (Ed.). (2006). Handbook of aluminium recycling. Vulkan-Verlag GmbH.
Terrestrial abundance of elements(http://www.daviddarling.info/encyclopedia/E/elterr.html)
Terrestrial abundance of elements(http://www.daviddarling.info/encyclopedia/E/elterr.html)
USGS(United States Geological Survey)(2017), Mineral Industry Surveys.
Wang, R. C., Zhai, Y. C., Wu, X. W., & Ning, Z. Q. (2014). Extraction of alumina from fly ash by ammonium hydrogen sulfate roasting technology. Transactions of Nonferrous Metals Society of China, 24(5), 1596-1603.
William F.. Smith, & Hashemi, J. (2011). Foundations of materials science and engineering. McGraw-Hill.
Wu, C. Y., Yu, H. F., & Zhang, H. F. (2012). Extraction of aluminum by pressure acid-leaching method from coal fly ash. Transactions of nonferrous metals society of China, 22(9), 2282-2288.
Yao, Z. T., Xia, M. S., Sarker, P. K., & Chen, T. (2014). A review of the alumina recovery from coal fly ash, with a focus in China. Fuel, 120, 74-85.
Zhou, L., Chen, Y. L., Zhang, X. H., Tian, F. M., & Zu, Z. N. (2014). Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds. Materials Letters, 119, 140-142.
Zumdahl, S. S., & DeCoste, D. J. (2010). Introductory Chemistry.
Zumdahl, S., & DeCoste, D. J. (2012). Chemical principles. Nelson Education.
工業廢棄物清理與資源化資訊網。鋁渣資源化新技術 (https://riw.tgpf.org.tw/ReadFile/?p=ProductsHistory&n=8專題_鋁渣資源化新技術.pdf)
中華民國統計資訊網。行業標準分類(https://www.stat.gov.tw/ct.asp?xItem=38933&ctNode=1309&mp=4)
王瓈詩(2016)。非鐵新興市場特輯-鋁金屬篇。經濟部技術處產業技術知識服務計畫
台灣輕金屬。鋁金屬特性介紹(http://www.twlma.org.tw/)
行政院主計總處。行業分類標準查詢(https://www.dgbas.gov.tw/mp.asp?mp=1)
行政院環境保護署(2014)。事業廢棄物最終處置策略(https://www.epa.gov.tw/ct.asp?xItem=35569&CtNode=34165&mp=epa)
行政院環境保護署。事業廢棄物申報及資訊系統(https://waste1.epa.gov.tw//Grant/GS-UC60/QryGrantData.aspx)
李成志, 劉永秀, 劉偉, 王伯通, & 孟昭頌. (2017). 一種測定濕法磷酸中氧化鋁含量的化學方法. 磷肥與複肥, 1, 019.
林浚泉(1980)。再生鋁冶煉技術。工研院月刊
施勳章(2011)。廢鋁熔煉飛灰資源化為冰晶石之研究。國立高雄應用科技大學化學工程與材料工程系碩士論文
查爾斯, 辛格, & 遠得玉. (2004). 技術史. 上海市= Shanghai: 上海科技教育出版社= Shanghai keji jiaoyu chubanshe.
陳建凱(2010)。廢鋁熔煉集塵飛灰脫氮除臭之研究。國立高雄應用科技大學化學工程與材料工程系碩士論文
陳清齊, 謝國正, 陳志恆, & 翁祖炘. (2012). 鋁渣的安定化與再利用技術開發. 鑛冶: 中國鑛冶工程學會會刊, (220), 111-116.
陶錫富(2009)。二次鋁渣於一貫作業煉鋼廠再利用之探討。國立高雄應用科技大學化學工程與材料工程系碩士論文
楊昇府, 王多美, 蔣世傑, 劉雅萍, & 林憲平. (2014). 化煉鋁爐渣為高級耐火材料商業化生產技術開發. 鑛冶: 中國鑛冶工程學會會刊, (228), 93-109.
楊昇府, 葉俊彥, 張彥華, & 蔣世傑. (2011). 煉鋁爐渣為原料製作耐火材料之研究. 鑛冶: 中國鑛冶工程學會會刊, (213), 51-56.
經濟部事業廢棄物再利用管理辦法(2016)
經濟部統計處。經濟部工業產品分類(https://www.moea.gov.tw/Mns/dos/content/ContentLink.aspx?menu_id=20444)
董鍾明、陳婉儀、林研詩、李信宏、黃秋香、王瓈詩(2017)。循環經濟下的資源加值應用-工業循環。經濟部技術處產業技術知識服務計畫
劉文海(2006)。中國大陸再生鋁市場現況與展望。金屬工業研究發展中心
蔡志威(2014a)。應用鹼性溶液進行鋁渣脫氮之研究。嘉南藥理大學環境工程與科學系碩士論文
蔡明憲(2014b)。利用氧化鋁粉末/靜電紡絲纖維應用於環氧樹脂複合材料之導熱性質研究。國立高雄應用科技大學化學工程與材料工程系碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code