Responsive image
博碩士論文 etd-0729118-134815 詳細資訊
Title page for etd-0729118-134815
論文名稱
Title
以乳化型緩衝釋碳材提升三氯乙烯生物脫氯效率:現地模場試驗
Application of emulsified buffering carbon-releasing materials to enhance TCE dechlorination efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-29
關鍵字
Keywords
緩衝釋碳材、脫鹵球菌、地下水污染、三氯乙烯、奈米零價鐵、模場試驗
Dehalococcoides spp., Groundwater pollution, Carbon-releasing material, Nanoscale zero-valent iron, Pilot-scale studies, Trichloroethylene
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
土壤及地下水的污染場址中,含氯脂肪碳氫化合物為常見之重質非水相溶液(dense non-aqueous phase liquids, DNAPLs)污染物,尤以三氯乙烯(trichloroethylene, TCE)最具代表性。由於受DNAPL污染場址之整治是屬於長期性的工作,因此結合加強式厭氧生物整治及基質緩釋機制乃成為現今眾多整治技術中較佳之整治方案。研究第一部份係以過去實驗團隊所研發之長效型膠體基質進行現地模場試驗,其注藥井(RW)於注藥初期能提高其總有機碳含量為1,126 mg/L(背景值為1.901 mg/L),並能迅速吸附污染物,TCE濃度由背景值0.068 mg/L降至0.022 mg/L,其值低於管制標準(0.050 mg/L)以下,並於研究第350天後,降解率達93%,符合監測標準(0.025 mg/L),且其酸鹼值趨於穩定並維持厭氧還原態環境。於注藥後第126天後,研究以分子生物技術分析現地相關菌群變化,發現明顯增加之菌群包含可降解含氯有機物之Enterobacter、與脫鹵球菌共生之甲烷菌屬及能生成乙酸及丙酸,並促進脫鹵球菌生長之異營性細菌等,證實本基質能於實場避免水體酸化,達酸鹼緩衝及異味控制之成效,刺激現地相關脫氯菌群生長並降解TCE。研究第二部分以草木灰及改質稻殼灰分別與自製乳化基質進行合成改良,製備具有酸鹼緩衝能力及緩釋碳源之綠色基質,由微生態批次試驗進行60天的結果顯示,添加草木灰之組別,能於初期提供鹼度,以中和發酵所產生之有機酸等酸化問題,其TCE降解率可達82.4%及84.1%。而添加改質稻殼灰之組別,於初期並未提高酸鹼值,但於試驗期間仍維持pH6.0以上,且亦能快速吸附污染物,降低水相中之TCE濃度,顯示本基質具酸鹼緩衝之特性,而由分子生物結果顯示,添加兩種綠色基質皆能有效提升地下水體中脫氯相關菌群數量。證實綠色基質能提升物理、生物及化學三大面向之處理污染物的能力,具緩釋、pH及異味控制能力以提升含氯有機物之厭氧還原脫氯效率,且為對環境友善、綠色及永續之基質材料。
Abstract
Trichloroethylene (TCE) is a common dense non-aqueous phase liquids (DNAPLs) pollutant in soil and groundwater. Enhanced anaerobic remediation is a better remediation treatment of TCE contaminated site. The first part of the study was a field model test using a long-lasting colloidal substrate. The injection of substrate can increase total organic carbon content to 1,126 mg/L (background value: 1.901 mg/L) at the initial stage, and quickly adsorb pollutants. After the 350 days, the degradation rate of the TCE reached 93% and maintained the pH value and the anaerobic reduction environment. Molecular biotechnology results shows that the significantly increased numbers of Enterobacter, methanogens and heterotrophic bacteria. It is confirmed that the base value can avoid water acidification, odor control and stimulate the growth of the existing dechlorination bacteria in the field and degrade TCE. The second part of the study is to use the unutilized resources of plants and the emulsifying substrate to synthesize the green substrate with buffering capacity and can slow-release carbon source. The results of microbial batch test showed that the addition of the plant ash group could provide alkalinity at the initial stage to neutralize the acidification problems of organic acids produced by fermentation, and the TCE degradation rate could reach 82.4% and 84.1%. The group of modified rice hull ash maintained pH above 6.0 during the test, and removed TCE concentration in the water phase quickly. Molecular biotechnology results show that the addition of two green matrices can increase the numbers of dechlorination-related bacteria. Green substrate is a environmentally friendly and sustainable material that has abilities of pH buffer, odor control and enhance reductive dechlorination efficiency.
目次 Table of Contents
目錄
學位論文審定書 i
公開授權書 ii
誌謝 iii
摘要 iv
ABSTRACT v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1含氯有機污染物 4
2.1.1含氯脂肪碳氫化合物污染概述 4
2.2三氯乙烯特性 9
2.2.1三氯乙烯物理化學特性及其對人體之風險危害 9
2.2.2三氯乙烯傳輸與環境風險危害 13
2.3土壤與地下水污染整治技術發展 15
2.3.1現地物理、化學及生物整治技術 15
2.3.2永續環境整治技術 17
2.4三氯乙烯生物降解機制 18
2.4.1好氧共代謝降解 18
2.4.2厭氧還原脫氯降解 20
2.5乳化型緩衝釋碳材 23
2.5.1長效型膠體基質 23
2.5.2草木灰 27
2.5.3改質稻殼灰 29
2.8分子生物技術於污染整治應用 32
第三章 材料與方法 34
3.1研究流程 34
3.2實驗材料與設備 36
3.2.1實驗材料 36
3.2.2實驗設備 38
3.3實驗基質製備 40
3.3.1奈米零價鐵 40
3.3.2植物油乳化基質 41
3.3.3長效型膠體基質 41
3.3.4綠色基質組 42
3.4模場試驗設計 43
3.4.1場址地質及水文介紹 43
3.4.2模場試驗方法 44
3.5批次試驗設計 46
3.5.1批次試驗規劃與方法 46
3.6實驗分析方法 48
3.6.1水質分析 48
3.6.2成分特性分析 52
3.6.3分子生物分析 54
第四章 結果與討論 60
4.1模場試驗 60
4.1.1現地地下水背景基本水質分析 62
4.1.2長效型膠體基質模場試驗基本水質分析 63
4.1.3長效型膠體基質模場試驗污染物降解成效 67
4.1.4長效型膠體基質模場試驗相關副產物變化 69
4.1.5分子生物技術分析成果 74
4.2綠色基質成分特性分析 77
4.2.1 ESEM-EDS 77
4.2.2 XRD 80
4.2.3 BET 81
4.3厭氧微生態批次試驗 82
4.3.1批次試驗基本水質分析 84
4.3.2批次試驗污染物濃度分析 89
4.3.3批次試驗水質及相關化學參數變化 93
4.3.4分子生物技術分析 98
4.4基質綜合效益評估 101
第五章 結論與建議 102
5.1結論 102
5.2建議 104
參考文獻 105



圖目錄
圖2-1 DNAPLs於地下污染分布 14
圖2-2 氧化共代謝簡易示意圖 19
圖2-3 共代謝過程的競爭抑制、還原能消耗再生及代謝產物毒性抑制示意圖 20
圖2-4 TCE氫解過程 21
圖2-5長效型膠體基質降解TCE機制圖 25
圖2-6 [SiO4 ]4-和[AlO4 ]5-晶體結構 29
圖3-1 研究架構流程圖 35
圖3-2 合成奈米零價鐵之反應器 38
圖3-3奈米零價鐵之製備過程照片 40
圖3-4 植物油乳化基質成品 41
圖3-5長效型膠體基質製備過程 42
圖3-6 (a)草木灰(b)改質稻殼灰 42
圖3-7現地模場整治井(RW為第一次注藥井)與監測井位置與地下水流向圖示 43
圖3-8 Pacbio 16S菌相分析流程圖 59
圖4-1 現地模場試驗之基本水質(a)pH及(b)ORP監測結果 65
圖4-2 現地模場試驗之基本水質(a)DO及(b)EC監測結果 66
圖4-3 現地地下水井TCE監測數據 68
圖4-4 現地地下水井(a)TOC及(b)甲烷監測數據 70
圖4-5 現地地下水井(a)cDCE及(b)1,1-DCE監測數據結果 71
圖4-6 硫化氫於不同酸鹼值條件下在水體中之型態與比例 72
圖4-7 現地試驗之硫化物監測濃度 73
圖4-8 模場Dhc基因表現量變化趨勢圖 74
圖4-9 藥井與其下游井於注藥前後之菌相豐富度變化圖 75
圖4-10 注藥井RW及其下游井之Heatmap圖 76
圖4-11 草木灰表面之E-SEM分析結果 78
圖4-12 草木灰表面之EDS分析結果 78
圖4-13 改質稻殼灰表面之E-SEM分析結果 79
圖4-14 改質稻殼灰表面之EDS分析結果 79
圖4-15 (a)草木灰及(b)改質稻殼灰之XRD晶相結構分析結果 80
圖4-16 批次試驗之基本水質(a)pH及(b)DO監測結果 87
圖4-17 批次試驗之基本水質(a)ORP及(b)EC監測結果 88
圖4-18 批次試驗之(a)TCE及(b)cDCE之監測結果 92
圖4-19 批次試驗之(a)TOC及(b)硫化物監測結果 95
圖4-20 批次試驗之(a)甲烷及(b)氫氣之監測結果 97
圖4-21 批次試驗Dhc基因表現量趨勢圖 100

表目錄

表 2-1 國內公告受CAHS之場址 6
表2-2 我國土壤及地下水中含CAHS污染管制標準 8
表2-3 含氯脂肪碳氫化合物性質與環境行為特點 9
表2-4 乙烯與氯化乙烯類化合物基本物化特性 11
表2-5 TCE之健康危害效應 12
表3-1井位相關參數 45
表3-2 批次實驗之組別 47
表3-3 菌屬及特徵基因於QPCR所使用之引子及探針序列 57
表3-4 REAL-TIME PCR所配置之反應混合液之比例 58
表3-5 NGS所使用之PRIMER 58
表4-1背景地下水採樣分析 62
表4-2 現地土壤分析 83
表4-3 現地地下水特性分析 83
表4-4 基質綜合評估 101
參考文獻 References
Abdelrasoul, A., Zhang, H., Cheng, C. H., & Doan, H. (2017). Applications of molecular simulations for separation and adsorption in zeolites. Microporous and Mesoporous Materials, 242, 294-348.
Aktaş, Ö., Schmidt, K. R., Mungenast, S., Stoll, C., & Tiehm, A. (2012). Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination rates and growth of Dehalococcoides spp. Bioresource Technology, 103(1), 286-292.
An, T. T., & Picardal, F. W. (2015). Desulfuromonas carbonis sp. nov., an Fe (III)-, S0-and Mn (IV)-reducing bacterium isolated from an active coalbed methane gas well. International Journal of Systematic and Evolutionary Microbiology, 65(5), 1686-1693.
Atashgahi, S., Lu, Y., Zheng, Y., Saccenti, E., Suarez‐Diez, M., Ramiro‐Garcia, J., & Dejonghe, W. (2017). Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environmental Microbiology, 19(3), 968-981.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M. P., & Majone, M. (2008). Use of poly-β-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science and Technology, 57(6), 921-925.
Azizi, S. N., & Yousefpour, M. (2010). Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. Journal of Materials Science, 45(20), 5692-5697.
Banerjee, S., Barman, S., & Halder, G. (2017). Sorptive elucidation of rice husk ash derived synthetic zeolite towards deionization of coalmine waste water: A comparative study. Groundwater for Sustainable Development, 5, 137-151.
Behrens, S., Azizian, M. F., McMurdie, P. J., Sabalowsky, A., Dolan, M. E., Semprini, L., & Spormann, A. M. (2008). Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Applied and Environmental Microbiology, 74(18), 5695-5703.
Boccuti, S., Squitieri, A., Angelini, G., Lazzari, A., Di Luzio, E., & Albano, M. (2015). Preliminary surface analyses by ESEM–EDS of calcite bowls from Shahr-i Sokhta (Sistan, Iran, ca. 3200–1800 BCE): Results and possible interpretations. Journal of Archaeological Science, 61, 244-259.
Bolognesi, C., Bruzzone, M., Ceppi, M., & Kirsch-Volders, M. (2017). The lymphocyte cytokinesis block micronucleus test in human populations occupationally exposed to vinyl chloride: A systematic review and meta-analysis. Mutation Research/Reviews in Mutation Research, 774, 1-11.
Bouwer, E. J. (2017). Bioremediation of chlorinated solvents using alternate electron acceptors. In Handbook of Bioremediation (1993) (pp. 149-176). CRC Press.
Brennecke, D. (2015). Einfluss der thermischen und mikrowellenunterstützten Alterung von ko-gefällten Methanolsynthesekatalysatoren (Doctoral dissertation, Beuth Hochschule für Technik Berlin).
Canti, M. G., & Brochier, J. É. (2017). Plant ash.
Chambers, J. E., Wilkinson, P. B., Wealthall, G. P., Loke, M. H., Dearden, R., Wilson, R., ... & Ogilvy, R. D. (2010). Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation. Journal of Contaminant Hydrology, 118(1-2), 43-61.
Chang, C. H., Yang, H. Y., Hung, J. M., Lu, C. J., & Liu, M. H. (2017). Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system. International Biodeterioration & Biodegradation, 117, 150-157.
Chu, Y. S. (2014). A Study of Phytoremediation of Diesel Contaminated Soils by Adding Compost.
Ekvall, H., Löfgren, S., & Bostedt, G. (2014). Ash recycling—A method to improve forest production or to restore acidified surface waters?. Forest Policy and Economics, 45, 42-50.
Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., ... & Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512.
Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: a review. Journal of Hazardous Materials, 283, 382-399.
Fuller, M. E., Schaefer, C. E., & Steffan, R. J. (2009). Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions. Chemosphere, 77(8), 1076-1083.
Genomics NGS Analysis Team. (2017). Bioinformatics Analysis of 16S rDNA Amplicon Sequencing (Pacbio).
Goris, T., Schiffmann, C. L., Gadkari, J., Adrian, L., von Bergen, M., Diekert, G., & Jehmlich, N. (2016). Proteomic data set of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Data in brief, 8, 637-642.
He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., & Löffler, F. E. (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424(6944), 62.
Holmer, M., & Hasler-Sheetal, H. (2014). Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results. Frontiers in Marine Science, 1, 64.
Huang, Y. L. (2013). Application of long-lasting substrate to remediate TCE-contaminated groundwater.
Hunter, W. J., & Shaner, D. L. (2010). Biological remediation of groundwater containing both nitrate and atrazine. Current Microbiology, 60(1), 42.
Huotari, N., Tillman-Sutela, E., Moilanen, M., & Laiho, R. (2015). Recycling of ash–For the good of the environment?. Forest Ecology and Management, 348, 226-240.
Ilić, B., & Wettstein, S. G. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous and Mesoporous Materials, 239, 221-234.
Johnson, D. R., Lee, P. K., Holmes, V. F., Fortin, A. C., & Alvarez-Cohen, L. (2005). Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Applied and Environmental Microbiology, 71(11), 7145-7151.
Kang, J. W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology Letters, 36(6), 1129-1139.
Khoshbin, R., & Karimzadeh, R. (2017). Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha. Advanced Powder Technology, 28(8), 1888-1897.
Koohsaryan, E., & Anbia, M. (2016). Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 37(4), 447-467.
Kuo, Y. C., Liang, S. H., Wang, S. Y., Chen, S. H., & Kao, C. M. (2013). Application of emulsified substrate biobarrier to remediate TCE-contaminated groundwater: Pilot-scale study. Journal of Hazardous, Toxic, and Radioactive Waste, 18(2), 04014006.
Kwon, T. S., Yang, J. S., Baek, K., Lee, J. Y., & Yang, J. W. (2006). Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 136(3), 610-617.
Lai, A., Aulenta, F., Mingazzini, M., Palumbo, M. T., Papini, M. P., Verdini, R., & Majone, M. (2017). Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere, 169, 351-360.
Li, H., Chen, Y. Q., Chen, S., Wang, X. L., Guo, S., Qiu, Y. F., & Yu, Y. J. (2017). Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater. PloS one, 12(3), e0172337.
Li, X. Q., Brown, D. G., & Zhang, W. X. (2007). Stabilization of biosolids with nanoscale zero-valent iron (nZVI). Journal of Nanoparticle Research, 9(2), 233-243.
Liang, X., Molenda, O., Tang, S., & Edwards, E. A. (2015). Identity and substrate-specificity of reductive dehalogenases expressed in Dehalococcoides-containing enrichment cultures maintained on different chlorinated ethenes. Applied and Environmental Microbiology, AEM-00536.
Liavitskaya, T., Guigo, N., Sbirrazzuoli, N., & Vyazovkin, S. (2017). Further insights into the kinetics of thermal decomposition during continuous cooling. Physical Chemistry Chemical Physics, 19(29), 18836-18844.
Lien, P. J. (2016). Application of a carbon-releasing substrate with pH buffer capacity and high mobility to remediate TCE-contaminated groundwater.
Lien, P. J., Yang, Z. H., Chang, Y. M., Tu, Y. T., & Kao, C. M. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: effectiveness and mechanism study. Chemical Engineering Journal, 289, 525-536.
Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., & Gilkes, R. J. (2018). Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma, 312, 139-150.
Lin, K. S., Mdlovu, N. V., Chen, C. Y., Chiang, C. L., & Dehvari, K. (2018). Degradation of TCE, PCE, and 1, 2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of Cleaner Production, 175, 456-466.
Liu, B., Zhang, H., Lu, Q., Li, G., & Zhang, F. (2018). A Cu Ni bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of The Total Environment, 635, 1417-1425.
Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H., & Wang, Y. (2016). A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 112, 1190-1198.
Liu, J., Cheng, X., Zhang, Y., Wang, X., Zou, Q., & Fu, L. (2017). Zeolite modification for adsorptive removal of nitrite from aqueous solutions. Microporous and Mesoporous Materials, 252, 179-187.
Liu, N., Li, H., Li, M., Ding, L., Weng, C. H., & Dong, C. D. (2017). Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. Bioresource Technology, 240, 98-105.
Liu, T., First, E. L., Hasan, M. F., & Floudas, C. A. (2016). A multi-scale approach for the discovery of zeolites for hydrogen sulfide removal. Computers & Chemical Engineering, 91, 206-218.
MacKenzie, K. J., Brew, D. R., Fletcher, R. A., & Vagana, R. (2007). Formation of aluminosilicate geopolymers from 1: 1 layer-lattice minerals pre-treated by various methods: a comparative study. Journal of Materials Science, 42(12), 4667-4674.
Meckenstock, R. U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Aamand, J., ... & Boon, N. (2015). Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers.
Mirza, B. S., Sorensen, D. L., McGlinn, D. J., Dupont, R. R., & McLean, J. E. (2017). Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns. Applied Microbiology and Biotechnology, 101(11), 4799-4813.
Mohamed, R. M., Mkhalid, I. A., & Barakat, M. A. (2015). Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arabian Journal of Chemistry, 8(1), 48-53.
Mondal, P. K., Lima, G., Zhang, D., Lomheim, L., Tossell, R. W., Patel, P., & Sleep, B. E. (2016). Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene. Journal of Hazardous Materials, 313, 37-48.
Naskar, M. K., Kundu, D., & Chatterjee, M. (2012). A Facile Hydrothermal Conversion of Rice Husk Ash to ZSM‐5 Zeolite Powders. Journal of the American Ceramic Society, 95(3), 925-930.
Niu, Y., Tan, H., & Hui, S. E. (2016). Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress in Energy and Combustion Science, 52, 1-61.
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: a review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235-242.
Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M., ... & Trajanoski, Z. (2014). A survey of tools for variant analysis of next-generation genome sequencing data. Briefings in Bioinformatics, 15(2), 256-278.
Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Sonthirod, C., Naktang, C., ... & Tangphatsornruang, S. (2017). High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Scientific Reports, 7(1), 2774.
Prakongkep, N., Gilkes, R. J., & Wiriyakitnateekul, W. (2015). Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science, 178(5), 732-740.
Ranty, B., Aldon, D., Cotelle, V., Galaud, J. P., Thuleau, P., & Mazars, C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science, 7, 327.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 72(4), 2765-2774.
Santasnachok, C., Kurniawan, W., & Hinode, H. (2015). The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining. Journal of Environmental Chemical Engineering, 3(3), 2115-2126.
Schaefer, C. E. (2016). Naturally occurring dechlorination reactions in rock matrices: Impacts on TCE fate and flux. Environmental Technology & Innovation, 6, 115-122.
Shah, M. S., Tsapatsis, M., & Siepmann, J. I. (2017). Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chemical Reviews, 117(14), 9755-9803.
Shahack-Gross, R., & Ayalon, A. (2013). Stable carbon and oxygen isotopic compositions of wood ash: an experimental study with archaeological implications. Journal of Archaeological Science, 40(1), 570-578.
Sheu, Y. T. (2015). Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities for TCE-contaminated groundwater remediation.
Sheu, Y. T., Chen, S. C., Chien, C. C., Chen, C. C., & Kao, C. M. (2015). Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. Journal of Hazardous Materials, 284, 222-232.
Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next‐generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794-1805.
Shukla, A. K., Upadhyay, S. N., & Dubey, S. K. (2014). Current trends in trichloroethylene biodegradation: a review. Critical Reviews in Biotechnology, 34(2), 101-114.
Sigot, L., Ducom, G., & Germain, P. (2016). Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chemical Engineering Journal, 287, 47-53.
Smith, D. R. (2014). Last-gen nostalgia: a lighthearted rant and reflection on genome sequencing culture. Frontiers in Genetics, 5, 146.
Stroo, H. F., Vogel, C. M., & Ward, C. H. (2014). Chlorinated solvent source zone remediation. B. H. Kueper (Ed.). N. Y: Springer.
Stroo, H. F., West, M. R., Kueper, B. H., Borden, R. C., Major, D. W., & Ward, C. H. (2014). In situ bioremediation of chlorinated ethene source zones. In Chlorinated solvent source zone remediation (pp. 395-457). Springer, New York, NY.
Sydow, L., Bennett, P. C., & Nordstrom, D. K. (2017). Sulfur Chemistry of Cinder Pool, YNP: Implications for a Chemical Origin of Life. Procedia Earth and Planetary Science, 17, 504-507.
Teerakun, M., Reungsang, A., Lin, C. J., & Liao, C. H. (2011). Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater. Journal of Environmental Sciences(China), 23(4), 560-567.
Tsai, C. W. (2017). Application of emulsified molasses buffered substrate to enhance the bioremediation efficiency of TCE-contaminated groundwater.
Tuan, H. M. (2016). Anaerobic Groundwater Bioremediation in Chlorinated Solvent Contaminated Site: a Case Study in Tainan.
Ummah, H., Suriamihardja, D. A., Selintung, M., & Wahab, A. W. (2015). Analysis of chemical composition of rice husk used as absorber plates sea water into clean water. ARPN Journal of Engineering and Applied Sciences, 10(14), 6046-6050.
Veeravalli, S. S., Lalman, J. A., Chaganti, S. R., & Heath, D. D. (2017). Continuous hydrogen production using upflow anaerobic sludge blanket reactors: effect of organic loading rate on microbial dynamics and H2 metabolism. Journal of Chemical Technology & Biotechnology, 92(3), 544-551.
Wang, X., & Nguyen, A. V. (2016). Characterisation of electrokinetic properties of clinoptilolite before and after activation by sulphuric acid for treating CSG water. Microporous and Mesoporous Materials, 220, 175-182.
Wang, Y., Du, T., Qiu, Z., Song, Y., Che, S., & Fang, X. (2018). CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Materials Chemistry and Physics, 207, 105-113.
Wdowin, M., Franus, M., Panek, R., Badura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16(6), 1217-1223.
Wen, C., Sheng, H., Ren, L., Dong, Y., & Dong, J. (2017). Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil. Process Safety and Environmental Protection, 109, 599-608.
Wen, L. L., Zhang, Y., Chen, J. X., Zhang, Z. X., Yi, Y. Y., Tang, Y., & Zhao, H. P. (2017). The dechlorination of TCE by a perchlorate reducing consortium. Chemical Engineering Journal, 313, 1215-1221.
Wen, L. L., Zhang, Y., Pan, Y. W., Wu, W. Q., Meng, S. H., Zhou, C., ... & Zhao, H. P. (2015). The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environmental Science and Pollution Research, 22(23), 19039-19047.
Wesseldyke, E. S., Becker, J. G., Seagren, E. A., Mayer, A. S., & Zhang, C. (2015). Numerical modeling analysis of hydrodynamic and microbial controls on DNAPL pool dissolution and detoxification: Dehalorespirers in co-culture. Advances in Water Resources, 78, 112-125.
World Health Organization, & International Agency for Research on Cancer. (2008). 1, 3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Press, International Agency for Research on Cancer.
Xin, J., Zheng, X., Han, J., Shao, H., & Kolditz, O. (2015). Remediation of trichloroethylene by xanthan gum-coated microscale zero valent iron (XG-mZVI) in groundwater: Effects of geochemical constituents. Chemical Engineering Journal, 271, 164-172.
Zhang, T., & Fang, H. H. (2006). Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, 70(3), 281-289.
Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3-4), 323-332.
陳亮,劉玉龍,李月華,劉菲,2016,不同pH條件下三氯乙烯及其脫氯產物對苯或甲苯厭氧生物降解的影響,環境科學學報,36(8),2917-2923。
徐甄,2015,發展持久性 pH 緩衝膠體基質處理受三氯乙烯污染之地下水,中山大學環境工程研究所學位論文,1-116。
曾瀚緯,2013,模擬受二氯乙烯污染之地下水結合厭氧脫氯與好氧共代謝之生物復育研究。
黃幸如,2015,地下水中順-1, 2-二氯乙烯好氧生物復育之研究。
范瑞娟,郭書海,李鳳梅,吳波,張琇,2017,有機污染土壤電動-微生物修復過程中的影響因素及優化措施,生態環境學報,26(3),522-530。
高尚,王磊,龍濤,曹少華,陳檣,2018,污染地塊中高密度非水相液體(DNAPLs)遷移特徵及判定調查技術研究進展,生態與農村環境學報,34(4),289-299。
姬洪飛,王穎,2016,分子生物學方法在環境微生物生態學中的應用研究進展,生態學報36(24)。
張育禎,陳谷汎,2015,過硫酸鹽氧化法技術發展及污染整治應用,土壤及地下水污染整治,2(3),231-241。
楊嘉葦,2010,奈米零價鐵去除養豬廢水中硫化氫之研究,國立高雄大學土木與環境工程學系碩士論文。
趙天濤,邢志林,張麗杰,項錦欣,何芝,楊旭,高艷輝,2017,氯代烯烴脅迫下菌群SWA1的降解活性及群落結構,中國環境科學37(120),4637-4648。
戴偉,羅江山,唐永建,王朝陽,陳善俊,孫衛國,2009,氫氣分子在沸石中的吸附模擬研究,物理學報,58(3),1890-1895。
盧光亮,劉文堯,高志明,連博仁,王宇軒,劉奕良,賴宣婷,2016,不同基質於地下水中傳輸與三氯乙烯生物移除之比較,土壤及地下水污染整治,3(2),123-136。
行政院環保署,2011,土壤污染管制標準,環署土字第1000008496號令。
行政院環保署,2013,地下水污染管制標準,環署土字第1000010141號令。
行政院環保署,2017,分子生物技術應用於調查整治技術之相關文獻及發展趨勢。
行政院環保署土壤及地下水整治網,2018,國內土壤及地下水污染場址列管情形。
經濟部工業局,2004,土壤與地下水污染整治技術手冊-生物處理技術。
勞動部職業安全衛生署,2018,公告毒性化學物質安全資料表(GHS SDS)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code