Responsive image
博碩士論文 etd-0729118-152147 詳細資訊
Title page for etd-0729118-152147
論文名稱
Title
應用聚麩胺酸基質加強三氯乙烯污染在地下水之生物復育成效
Application of gamma poly-glutamic acid to enhance the bioremediation efficiency of TCE-contaminated in groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-29
關鍵字
Keywords
次世代定序、三氯乙烯、聚麩胺酸、還原脫氯
reductive dechlorination, gamma poly-glutamic acid(γ-PGA), trichloroethylene(TCE), next generation sequencing(NGS)
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
三氯乙烯(trichloroethylene, TCE)為地下水體中常見的污染物,TCE之生物降解須長期注入主要基質,過去研究基質之注入往往造成地下水酸化,進而使脫氯菌的生長受到抑制。聚麩胺酸(gamma poly-glutamic acid, γ-PGA)是一種經由生化合成之高分子聚合物,具保濕、無毒、金屬螯合及生物可分解性等特性。本研究以γ-PGA做為微生物生長之基質進行管柱實驗以及現地模場試驗,評估加強TCE厭氧還原脫氯之成效,研究結合分子生物技術變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)及次世代定序(next generation sequencing, NGS)觀察菌相及菌種之變化,再以即時定量分析(real-time polymerase chain reaction, qPCR)觀察脫氯菌(Dehalococcoides sp., Dhc)量變化趨勢。γ-PGA基本特性分析結果顯示γ-PGA粒徑大小有效分佈到粗細顆粒間(包括黏土到砂粒)。管柱實驗結果得知,添加γ-PGA於管柱中做為碳源時,反應期間並未監測到出流水pH酸化問題維持中性環境,因γ-PGA含有胺基,胺基溶出後和水形成鹼性物質氨可中和微生物釋出有機酸,管柱出流水之TCE濃度經50天反應後由1.6降至0.009 mg/L,降解效率高達99%。由DGGE菌相分析γ-PGA確實可以增加環境中的菌相豐富度,以qPCR分析Dhc菌量,其初始菌量約4.6×103 gene copies/g soil,於第90天菌量達到3.1×106 gene copies/g soil。現地模場試驗的結果顯示,注藥井TCE初始濃度為0.127 mg/L,灌注藥劑第75天後,TCE濃度改善至0.008 mg/L(降解效率為93.7%);下游監測井(距離注藥井1 m)之TCE濃度5周內由0.149 mg/L改善至0.035 mg/L(降解率約為63.6%),亦發現地下水pH值未有酸化情形發生。NGS菌種鑑定結果得知,本場址含有有可能將VC降解之菌種、可以將含氯有機物脫氯的菌種、合成維他命B12營造適合脫氯菌生長環境的菌種,以及能產生氫氣加速脫氯菌進行還原脫氯作用的菌種,顯示本場址的菌種有效的降解TCE至乙烯。qPCR結果顯示,注藥井初始脫氯菌之菌量為1.0×103 gene copies/L,於第75天菌量增加至5.63×107 gene copies/L。本研究成果顯示:γ-PGA具備pH緩衝的效果,提供促進脫氯菌生長之碳源,並維持厭氧還原環境和菌相豐富度。模場數據顯示γ-PGA可有效促進現場TCE之生物降解,使γ-PGA之基質系統成為一種更具經濟效益及環境友善之綠色整治工法。
Abstract
Trichloroethene(TCE) is a type of recalcitrant contaminant commonly found in groundwater. Provide carbon sources for a long period of time for TCE-bioremediation is necessary . Related research indicates that acidification problems often be accompanied with injecting substrate and that problems inhibits biological dechlorination mechanisms. The gamma poly-glutamic acid (γ-PGA) is a biopolymer synthesized by biochemical processes. In addition, its characteristics of moisture resistance, no toxicity, and chelating ability with metals. In this study, column experiments and field scale test were performed to evaluate the feasibility of using γ-PGA as a primary substrate to enhance the dechlorinating process of TCE degradation under anaerobic conditions. The predominant bacterial species and change of bacterial diversity during TCE bioremediation were using different molecular biology techniques to analyses, it were including denaturing-gradient gel electrophoresis (DGGE), next generation sequencing (NGS), and real-time PCR (qPCR). Among them, qPCR observed the change trend of Dehalococcoides(Dhc). Result of particle size showed that the γ-PGA could distribution well in soil particles. The results of column experiments showed that when γ-PGA were useded as a carbon source in the column, the acidity of the outflow water was not monitored during the reaction to maintain the neutral environment. Because γ-PGA contains an amine function group, and the amine group was dissolved after add system, and the formation of alkaline substance ammonia in water neutralizes the release of organic acid by the microorganism. The TCE concentration of the outflow of the column is reduced from 1.6 to 0.009 mg/L after 50 days of reaction, and the degradation efficiency is as high as 99%. The DGGE results show that γ-PGA could increase the abundance of bacteria in the environment. The data of qPCR for Dhc showed that the initial bacterial amount is about 4.6×103gene copies/g soil, and the amount of bacteria reaches 3.1×106gene copies/g soil on the 90th day. The results of field scale test showed that the initial concentration of TCE in the injection well was 0.127 mg/L. After the 75th day of the infusion, the TCE concentration was decreased to 0.008 mg/L (degradation efficiency was 93.7%). The TCE concentration of the downstream monitoring well (1 m from the injection well) were decreased from 0.149 mg/L to 0.035 mg/L within 5 weeks (degradation rate was about 63.6%). It was also found that the pH of the groundwater did not acidify. According to the identification results of NGS strains, the site contains strains that can completely reduce dechlorination, strains that can dechlorinate iii chlorinated aliphatic hydrocarbons, synthetic coenzymefactor B12 to create strains suitable for the growth environment of dechlorination bacteria, and produce hydrogen that coluld accelerate the reduce dechlorination of dechlorination bacteria effectively degrade TCE to ethylene.qPCR results show that the amount of the initial Dhc in the injection well was 1.0×103gene copies/L, and the amount of bacteria increased to 5.63×107gene copies/L on the 75th day. The results show that γ-PGA has a pH buffering effect, provides a carbon source that promotes the growth of dechlorination bacteria. The γ-PGA also can maintains an anaerobic reduction environment and bacterial abundance. The result of field scale test data showed that γ-PGA can effectively promote the biodegradation of TCE in situ, making the matrix system of γ-PGA a more economical and environmentally friendly green remediation method.
目次 Table of Contents
論文審定書 i
公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 含氯有機物來源與特性 4
2.2 地下水污染物處理技術之種類 7
2.2.1 物化處理 7
2.2.2 生物整治 8
2.3 TCE生物降解反應機制 12
2.3.1 好氧共代謝作用 13
2.3.2 厭氧還原脫氯作用 14
2.4 不同基質於土壤地下水之應用性 17
2.4.1 乳化型釋碳基質 17
2.4.2 乳化零價鐵 18
2.3.3 糖蜜 19
2.4.4 γ-PGA 20
2.5 環境微生物以及分子生物技術之應用 24
2.5.1 微生物多樣性之檢測方法 25
2.5.2 以即時定量PCR監測脫氯菌種與基因 28
2.5.3 以次世代定序監測菌群變化 29
第三章 實驗設備與方法 31
3.1 研究架構 31
3.2 實驗藥品與器材 33
3.2.1 實驗藥品 33
3.2.2 實驗器材 34
3.3 實驗設計 35
3.3.1 γ-PGA基本特性分析 35
3.3.2 管柱實驗 37
3.3.3 現地模場 39
3.4 採樣與樣品分析方法 41
3.4.1 水質分析方法 41
3.5 菌相分析 42
3.5.1 DNA萃取 42
3.5.2 聚合酶連鎖反應 43
3.5.3 變性梯度膠體電泳 44
3.5.4 即時定量分析 45
第四章 結果與討論 48
4.1 特性分析 48
4.1.1 黏度試驗 48
4.1.2 粒徑分布與界達電位 49
4.1.3 元素分析 50
4.1.4 均質試驗 50
4.1.5 流通試驗 51
4.2 管柱實驗 52
4.2.1 水質參數變化 52
4.2.2 化學參數變化 57
4.2.3 污染物變化趨勢 64
4.2.2 菌相變化分析 68
4.3 現地模場 74
4.3.1 水質變化趨勢 75
4.3.2 化學參數變化 80
4.3.3 污染物變化趨勢 84
4.3.3 菌相變化分析 88
4.4 應用NGS評估模場菌種 89
4.5 基質成本效益評估 96
第五章 結論與建議 97
5.1 結論 97
5.2 建議 99
第六章 參考文獻 100
參考文獻 References
Ahmad, S.A., Shamaan, N.A., Syed, M.A., Khalid, A., Ab Rahman, N.A., Khalil, K.A., Dahalan, F.A., Shukor, M.Y., 2017. Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rendiconti Lincei 28, 1-9.
Aikawa, S., Baramee, S., Sermsathanaswadi, J., Thianheng, P., Tachaapaikoon, C., Shikata, A., Waeonukul, R., Pason, P., Ratanakhanokchai, K., Kosugi, A., 2018. Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium. Systematic and applied microbiology.
Ainala, S. K., Seol, E., Kim, J. R., & Park, S. (2016). Effect of culture medium on fermentative and CO-dependent H2 production activity in Citrobacter amalonaticus Y19. International Journal of Hydrogen Energy, 41(16), 6734-6742.
Alfán-Guzmán, R., Ertan, H., Manefield, M., Lee, M., 2017. Isolation and characterization of Dehalobacter sp. strain TeCB1 including identification of TcbA: a novel tetra-and trichlorobenzene reductive dehalogenase. Frontiers in microbiology 8, 558.
Augelletti, F., Tremblay, J., Agathos, S. N., & Stenuit, B. (2018). Draft Whole-Genome Sequence of the Fluorene-Degrading Sphingobium sp. Strain LB126, Isolated from Polycyclic Aromatic Hydrocarbon-Contaminated Soil. Genome announcements, 6(15), e00249-18.
Aydin, S., Karaçay, H. A., Shahi, A., Gökçe, S., Ince, B., & Ince, O. (2017). Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews, 31(2), 61-72.
Bakhtiyari, M., Moosavi-Nasab, M., & Askari, H. (2015). Optimization of succinoglycan hydrocolloid production by Agrobacterium radiobacter grown in sugar beet molasses and investigation of its physicochemical characteristics. Food Hydrocolloids, 45, 18-29.
Bengelsdorf, F. R., Poehlein, A., Schiel-Bengelsdorf, B., Daniel, R., & Dürre, P. (2015). Genome sequence of the acetogenic bacterium oxobacter pfennigii DSM 3222T. Genome announcements, 3(6), e01408-15.
Bigley, A. N., Xiang, D. F., Ren, Z., Xue, H., Hull, K. G., Romo, D., & Raushel, F. M. (2016). Chemical mechanism of the phosphotriesterase from Sphingobium sp. strain TCM1, an enzyme capable of hydrolyzing organophosphate flame retardants. Journal of the American Chemical Society, 138(9), 2921-2924.
Bozinovski, D., Taubert, M., Kleinsteuber, S., Richnow, H. H., von Bergen, M., Vogt, C., & Seifert, J. (2014). Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Systematic and applied microbiology, 37(7), 488-501.
Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C., & Chisti, Y. (2018). Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnology advances.
Cerqueira, V. S., Maria do Carmo, R. P., Camargo, F. A., & Bento, F. M. (2014). Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. International Biodeterioration & Biodegradation, 95, 338-345.
Chang, C. H., Yang, H. Y., Hung, J. M., Lu, C. J., & Liu, M. H. (2017). Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system. International Biodeterioration & Biodegradation, 117, 150-157.
Chang, Y. C., Chen, T. Y., Tsai, Y. P., & Chen, K. F. (2018). Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: a field-scale study. RSC Advances, 8(5), 2433-2440.
Chen, J., Bowman, K. S., Rainey, F. A., & Moe, W. M. (2014). Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas. Biodegradation, 25(5), 747-756.
Chen, J. L., Ortiz, R., Steele, T. W., & Stuckey, D. C. (2014). Toxicants inhibiting anaerobic digestion: a review. Biotechnology advances, 32(8), 1523-1534.
Chiu, D. W. (2015). Using poly-glutamic acid to enhance the anaerobic dechlorination of trichloroethylene (Doctoral dissertation, MS Thesis, Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan).
Dahal, R. H., Chaudhary, D. K., & Kim, J. (2017). Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Archives of microbiology, 199(5), 701-710.
de Albergaria, J.T., Nouws, H.P., 2016. Soil Remediation: Applications and New Technologies. CRC Press.
de Albuquerque, E. M., Pozzi, E., Sakamoto, I. K., & Jurandyr, P. (2018). Treatability of landfill leachate combined with sanitary sewage in an activated sludge system. Journal of Water Process Engineering, 23, 119-128.
de Vries, H. M. T., & Nipshagen, A. A. M. (2015). Bioremediation of chloroethylenes: An evaluation of groundwater recirculation systems.
Doğan-Subaşı, E., Bastiaens, L., Leys, N., Boon, N., & Dejonghe, W. (2014). Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under TCE exposure. Biodegradation, 25(4), 493-504.
Dolinová, I., Štrojsová, M., Černík, M., Němeček, J., Macháčková, J., & Ševců, A. (2017). Microbial degradation of chloroethenes: a review. Environmental Science and Pollution Research, 24(15), 13262-13283.
Dumas, O., Despreaux, T., Perros, F., Lau, E., Andujar, P., Humbert, M., Montani, D., Descatha, A., 2018. Respiratory effects of trichloroethylene. Respiratory medicine 134, 47-53.
Eamrat, R., Tsutsumi, Y., Kamei, T., Khanichaidecha, W., Tanaka, Y., & Kazama, F. (2017). Optimization of Hydrogenotrophic Denitrification Behavior Using Continuous and Intermittent Hydrogen Gas Supply. Journal of Water and Environment Technology, 15(2), 65-75.
ESTCP. 2009. Edible Oil Emulsion for Treatment of Chlorinated Solvent Contaminated Groundwater at SWMU 17, Charleston Naval Weapons Station, Charleston, SC, Final Report. Prepared by Solutions-IES, Inc., ESTCP Project No. ER-0221, August 2009.
Evans, E., & Messerschmidt, U. (2017). Sugar beets as a substitute for grain for lactating dairy cattle. Journal of animal science and biotechnology, 8(1), 25.
Fontana, I. B., Peterson, M., & Cechinel, M. A. P. (2018). Application of brewing waste as biosorbent for the removal of metallic ions present in groundwater and surface waters from coal regions. Journal of environmental chemical engineering, 6(1), 660-670.
Freidman, B. L., Gras, S. L., Snape, I., Stevens, G. W., & Mumford, K. A. (2017). A bio-reactive barrier sequence for petroleum hydrocarbon capture and degradation in low nutrient environments. International Biodeterioration & Biodegradation, 116, 26-37.
Gafni, A., Lihl, C., Gelman, F., Elsner, M., & Bernstein, A. (2018). δ13C and δ37Cl Isotope Fractionation To Characterize Aerobic vs Anaerobic Degradation of Trichloroethylene. Environmental Science & Technology Letters, 5(4), 202-208.
Gam, Z. B. A., Thioye, A., Cayol, J. L., Joseph, M., Fauque, G., & Labat, M. (2018). Characterization of Desulfovibrio salinus sp. nov., a slightly halophilic sulfate-reducing bacterium isolated from a saline lake in Tunisia. International journal of systematic and evolutionary microbiology.
García-Solares, S. M., Ordaz, A., Monroy-Hermosillo, O., & Guerrero-Barajas, C. (2013). Trichloroethylene (TCE) biodegradation and its effect on sulfate reducing activity in enriched sulfidogenic cultures prevenient from a UASB maintained at 20 C. International Biodeterioration & Biodegradation, 83, 92-96.
Gates-Hollingsworth, M.A., Perry, M.R., Chen, H., Needham, J., Houghton, R.L., Raychaudhuri, S., Hubbard, M.A., Kozel, T.R., 2015. Immunoassay for capsular antigen of Bacillus anthracis enables rapid diagnosis in a rabbit model of inhalational anthrax. PloS one 10, e0126304.
Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water research, 89, 309-320.
Gophna, U., Konikoff, T., & Nielsen, H. B. (2017). Oscillospira and related bacteria–From metagenomic species to metabolic features. Environmental microbiology, 19(3), 835-841.
Gupta, M. M., & Aggarwal, A. (2018). From Mycorrhizosphere to Rhizosphere Microbiome: The Paradigm Shift. In Root Biology (pp. 487-500). Springer, Cham.
Gutleben, J., Chaib De Mares, M., van Elsas, J. D., Smidt, H., Overmann, J., & Sipkema, D. (2018). The multi-omics promise in context: from sequence to microbial isolate. Critical reviews in microbiology, 44(2), 212-229.
Harkness, M., & Fisher, A. (2013). Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns. Journal of contaminant hydrology, 151, 16-33.
Hassan, I., Eastman, A. W., Weselowski, B., Mohamedelhassan, E., Yanful, E. K., & Yuan, Z. C. (2016). Complete genome sequence of Arthrobacter sp. strain LS16, isolated from agricultural soils with potential for applications in bioremediation and bioproducts. Genome announcements, 4(1), e01586-15.
Helliwell, K.E., Lawrence, A.D., Holzer, A., Kudahl, U.J., Sasso, S., Kräutler, B., Scanlan, D.J., Warren, M.J., Smith, A.G., 2016. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology 26, 999-1008.
Henterly, R. W., & Harms, W. D. (2015). Optimal treatment zone moves during enhanced reductive dechlorination in fractured bedrock. Remediation Journal, 25(4), 81-88.
Hernandez, M. E., Beck, D. A., Lidstrom, M. E., & Chistoserdova, L. (2015). Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ, 3, e801.
Hernández, M., Neufeld, J. D., & Dumont, M. G. (2017). Enhancing Functional Metagenomics of Complex Microbial Communities Using Stable Isotopes. In Functional Metagenomics: Tools and Applications (pp. 139-150). Springer, Cham.
Hisada, M., & Kawase, Y. (2017). Mucilage extracted from wasted natto (fermented soybeans) as a low-cost poly-γ-glutamic acid based biosorbent: Removal of rare-earth metal Nd from aqueous solutions. Journal of Environmental Chemical Engineering, 5(6), 6061-6069.
Hur, D. H., Na, J. G., & Lee, E. Y. (2017). Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH‐1 newly isolated from brewery waste sludge. Journal of Chemical Technology & Biotechnology, 92(2), 311-318.
Huang, X., Mu, T., Shen, C., Lu, L., & Liu, J. (2016). Effects of bio-surfactants combined with alkaline conditions on volatile fatty acid production and microbial community in the anaerobic fermentation of waste activated sludge. International Biodeterioration & Biodegradation, 114, 24-30.
Huang, Y. L. (2013). Application of long-lasting substrate to remediate TCE-contaminated groundwater.
Illangasekare, T., Petri, B., Fucik, R., Sauck, C., Shannon, L., Sakaki, T., Smits, K., Cihan, A., Christ, J., Schulte, P., 2014. Vapor intrusion from entrapped NAPL sources and groundwater plumes: Process understanding and improved modeling tools for pathway assessment. COLORADO SCHOOL OF MINES GOLDEN.
Imachi, H., Sakai, S., Kubota, T., Miyazaki, M., Saito, Y., & Takai, K. (2016). Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. International journal of systematic and evolutionary microbiology, 66(3), 1293-1300.
Inbaraj, B. S., Wang, J. S., Lu, J. F., Siao, F. Y., & Chen, B. H. (2009). Adsorption of toxic mercury (II) by an extracellular biopolymer poly (γ-glutamic acid). Bioresource Technology, 100(1), 200-207.
Júlio, A. D. L., Fernandes, R. D. C. R., Costa, M. D., Neves, J. C. L., Rodrigues, E. M., & Tótola, M. R. (2018). A new biostimulation approach based on the concept of remaining P for soil bioremediation. Journal of environmental management, 207, 417-422.
Jünemann, S., Kleinbölting, N., Jaenicke, S., Henke, C., Hassa, J., Nelkner, J., Stolze, Y., Albaum, S.P., Schlüter, A., Goesmann, A., 2017. Bioinformatics for NGS-based metagenomics and the application to biogas research. Journal of biotechnology 261, 10-23.
Jennings, J. H., Sparta, D. R., Stamatakis, A. M., Ung, R. L., Pleil, K. E., Kash, T. L., & Stuber, G. D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224.
Jochum, T., Michalzik, B., Bachmann, A., Popp, J., & Frosch, T. (2015). Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst, 140(9), 3143-3149.
Joshi, K. K., & Chien, P. (2016). Regulated proteolysis in bacteria: caulobacter. Annual review of genetics, 50, 423-445.
Kleindienst, S., Higgins, S. A., Tsementzi, D., Chen, G., Konstantinidis, K. T., Mack, E. E., & Löffler, F. E. (2017). ‘Candidatus Dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Systematic and applied microbiology, 40(3), 150-159.
Kranzioch, I., Ganz, S., & Tiehm, A. (2015). Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. Environmental Science and Pollution Research, 22(4), 3138-3148.
Kumar, G., Sivagurunathan, P., Sen, B., Kim, S. H., & Lin, C. Y. (2017). Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. Bioresource technology, 240, 137-143.
Kunze, C., Diekert, G., & Schubert, T. (2017). Subtle changes in the active site architecture untangled overlapping substrate ranges and mechanistic differences of two reductive dehalogenases. The FEBS journal, 284(20), 3520-3535.
Kuo, Y. C., Liang, S. H., Wang, S. Y., Chen, S. H., & Kao, C. M. (2013). Application of emulsified substrate biobarrier to remediate TCE-contaminated groundwater: Pilot-scale study. Journal of Hazardous, Toxic, and Radioactive Waste, 18(2), 04014006.
Kuroda, M., Ogata, Y., Yahara, T., Yokoyama, T., Ishizawa, H., Takada, K., Inoue, D., Sei, K., Ike, M., 2017. Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols. Genome announcements 5.
Kwon, K., Shim, H., Bae, W., Oh, J., & Bae, J. (2016). Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier. Journal of hazardous materials, 313, 60-67.
Lalande, J., Villemur, R., & Deschênes, L. (2013). A new framework to accurately quantify soil bacterial community diversity from DGGE. Microbial ecology, 66(3), 647-658.
Lampis, S., Zonaro, E., Bertolini, C., Bernardi, P., Butler, C. S., & Vallini, G. (2014). Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microbial cell factories, 13(1), 35.
Lee, K. J., Lee, W. S., Hwang, A., Moon, J., Kang, T., Park, K., & Jeong, J. (2018). Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst, 143(1), 332-338.
Lee, L.L., Blumer-Schuette, S.E., Izquierdo, J.A., Zurawski, J.V., Loder, A.J., Conway, J.M., Elkins, J.G., Podar, M., Clum, A., Jones, P.C., 2018. Genus-wide assessment of lignocellulose utilization in the extremely thermophilic Caldicellulosiruptor by genomic, pan-genomic and metagenomic analysis. Applied and environmental microbiology, AEM. 02694-02617.
Lee, Y. J., Romanek, C. S., Mills, G. L., Davis, R. C., Whitman, W. B., & Wiegel, J. (2006). Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water. International journal of systematic and evolutionary microbiology, 56(9), 2089-2093.
Leitão, P., Aulenta, F., Rossetti, S., Nouws, H. P., & Danko, A. S. (2018). Impact of magnetite nanoparticles on the syntrophic dechlorination of 1, 2-dichloroethane. Science of The Total Environment, 624, 17-23.
Lerner, J. E. C., de los Angeles Gutierrez, M., Mellado, D., Giuliani, D., Massolo, L., Sanchez, E. Y., & Porta, A. (2018). Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina. Environmental Science and Pollution Research, 25(10), 10039-10048.
Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., Wu, J., & Liu, X. (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement. Journal of Cleaner Production, 93, 56-64.
Li, X., Zhang, W., Liu, T., Chen, L., Chen, P., & Li, F. (2016). Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe (II) oxidation at circumneutral pH in paddy soil. Soil Biology and Biochemistry, 94, 70-79.
Liang, S. H., Kuo, Y. C., Chen, S. H., Chen, C. Y., & Kao, C. M. (2013). Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. Journal of hazardous materials, 254, 107-115.
Liao, X., Yan, X., Ma, D., Zhao, D., Sun, L., Li, Y., Fei, Y., Li, P., Lin, L., Tao, H., 2018. The Research and Development of Technology for Contaminated Site Remediation. Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, pp. 785-798.
Lien, P. J., Yang, Z. H., Chang, Y. M., Tu, Y. T., & Kao, C. M. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: effectiveness and mechanism study. Chemical Engineering Journal, 289, 525-536.
Lin, C. W., Wu, C. H., Guo, P. Y., & Chang, S. H. (2017). Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater. Journal of environmental management, 204, 12-16.
Lin, K. S., Mdlovu, N. V., Chen, C. Y., Chiang, C. L., & Dehvari, K. (2018). Degradation of TCE, PCE, and 1, 2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of Cleaner Production, 175, 456-466.
Liu, F., Huang, G., Fallowfield, H., Guan, H., Zhu, L., & Hu, H. (2014). Bacterial Community in the Inoculum. In Study on Heterotrophic-Autotrophic Denitrification Permeable Reactive Barriers (HAD PRBs) for In Situ Groundwater Remediation (pp. 93-103). Springer, Berlin, Heidelberg.
Liu, N., Ding, L., Li, H., Zhang, P., Zheng, J., & Weng, C. H. (2018). Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes. Bioresource technology, 261, 133-141.
Liu, N., Li, H., Li, M., Ding, L., Weng, C. H., & Dong, C. D. (2017). Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. Bioresource technology, 240, 98-105.
Liu, Y., Li, Y., Hua, X., Müller, K., Wang, H., Yang, T., Wang, Q., Peng, X., Wang, M., Pang, Y., 2018. Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community. Environmental Science and Pollution Research 25, 14762-14772.
Lovley, D. (2013). Dissimilatory Fe (III)-and Mn (IV)-reducing prokaryotes. In The prokaryotes (pp. 287-308). Springer, Berlin, Heidelberg.
Luo, W., Zhu, X., Chen, W., Duan, Z., Wang, L., & Zhou, Y. (2014). Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds–chlorinated ethylenes as the model. Water Science and Technology, 69(10), 1971-1983.
Mészáros, É., Imfeld, G., Nikolausz, M., & Nijenhuis, I. (2013). Occurrence of Dehalococcoides and reductive dehalogenase genes in microcosms, a constructed wetland and groundwater from a chlorinated ethene contaminated field site as indicators for in situ reductive dehalogenation. Water, Air, & Soil Pollution, 224(11), 1768.
Maeda, A. H., Kunihiro, M., Ozeki, Y., Nogi, Y., & Kanaly, R. A. (2015). Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. International journal of systematic and evolutionary microbiology, 65(9), 2919-2924.
Maire, J., Joubert, A., Kaifas, D., Invernizzi, T., Marduel, J., Colombano, S., Cazaux, D., Marion, C., Klein, P.-Y., Dumestre, A., 2018. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Science of the Total Environment 612, 1149-1158.
Majone, M., Verdini, R., Aulenta, F., Rossetti, S., Tandoi, V., Kalogerakis, N., Agathos, S., Puig, S., Zanaroli, G., Fava, F., 2015. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New biotechnology 32, 133-146.
Malla, M. A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., & Abd_Allah, E. F. (2018). Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Frontiers in microbiology, 9.
Matassa, S., Verstraete, W., Pikaar, I., & Boon, N. (2016). Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water research, 101, 137-146.
Matturro, B., Presta, E., & Rossetti, S. (2016). Reductive dechlorination of tetrachloroethene in marine sediments: biodiversity and dehalorespiring capabilities of the indigenous microbes. Science of the Total Environment, 545, 445-452.
Matturro, B., & Rossetti, S. (2015). GeneCARD-FISH: detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization. Journal of microbiological methods, 110, 27-32.
Men, Y., Yu, K., Bælum, J., Gao, Y., Tremblay, J., Prestat, E., Stenuit, B., Tringe, S.G., Jansson, J., Zhang, T., 2017. Metagenomic and metatranscriptomic analyses reveal structure and dynamics of a dechlorinating community containing Dehalococcoides mccartyi and corrinoid-providing microorganisms under cobalamin-limited condition. Applied and environmental microbiology, AEM. 03508-03516.
Mirza, B. S., Sorensen, D. L., Dupont, R. R., & McLean, J. E. (2016). Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns. Applied microbiology and biotechnology, 100(5), 2367-2379.
Muñoz-Colmenero, M., Martínez, J. L., Roca, A., & Garcia-Vazquez, E. (2017). NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning. Food chemistry, 214, 631-636.
Muangchinda, C., Rungsihiranrut, A., Prombutara, P., Soonglerdsongpha, S., & Pinyakong, O. (2018). 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. Journal of hazardous materials.
Muller, K. A., Esfahani, S. G., Chapra, S. C., & Ramsburg, C. A. (2018). Transport and Retention of Concentrated Oil-in-Water Emulsions in Porous Media. Environmental science & technology, 52(7), 4256-4264.
Narwal, S. K., & Gupta, R. (2017). Biodegradation of xenobiotic compounds: An Overview. In Handbook of Research on Inventive Bioremediation Techniques (pp. 186-212). IGI Global.
Němeček, J., Steinová, J., Špánek, R., Pluhař, T., Pokorný, P., Najmanová, P., Knytl, V., Černík, M., 2018. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents–A field test. Science of The Total Environment 622, 743-755.
Němeček, J., Steinová, J., Špánek, R., Pluhař, T., Pokorný, P., Najmanová, P., Knytl, V., Černík, M., 2018. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents–A field test. Science of The Total Environment 622, 743-755.
Ni, Z., van Gaans, P., Rijnaarts, H., & Grotenhuis, T. (2018). Combination of aquifer thermal energy storage and enhanced bioremediation: Biological and chemical clogging. Science of the Total Environment, 613, 707-713.
Ojewumi, M. E. (2018). A bioremediation study of raw and treated crude petroleum oil polluted soil with Aspergillus niger and Pseudomonas aeruginosa. Journal of Ecological Engineering, 19(2), 226-235.
Oncel, M. S., Muhcu, A., Demirbas, E., & Kobya, M. (2013). A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. Journal of Environmental Chemical Engineering, 1(4), 989-995.
Ortiz‐Estrada, Á. M., Gollas‐Galván, T., Martínez‐Córdova, L. R., & Martínez‐Porchas, M. (2018). Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Reviews in Aquaculture.
Ozaki, T., Abe, N., Kimura, K., Suzuki, A., & Kaneko, J. (2017). Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase. Bioscience, biotechnology, and biochemistry, 81(1), 135-146.
Pérez-de-Mora, A., Lacourt, A., McMaster, M. L., Liang, X., Dworatzek, S. M., & Edwards, E. A. (2018). Chlorinated electron acceptor abundance drives selection of Dehalococcoides mccartyi (D. mccartyi) strains in dechlorinating enrichment cultures and groundwater environments. Frontiers in microbiology, 9.
Palau, J., Yu, R., Hatijah Mortan, S., Shouakar-Stash, O., Rosell, M., Freedman, D., Sbarbati, C., Fiorenza, S., Aravena, R., Marco-Urrea, E., 2017. Distinct Dual C–Cl Isotope Fractionation Patterns during Anaerobic Biodegradation of 1, 2-Dichloroethane: Potential To Characterize Microbial Degradation in the Field. Environmental science & technology 51, 2685-2694.
Panagiotakis, I., Antoniou, K., Mamais, D., & Pantazidou, M. (2015). Effects of Different Electron Donor Feeding Patterns on TCE Reductive Dechlorination Performance. Bulletin of environmental contamination and toxicology, 94(3), 289-294.
Pang, X., Lei, P., Feng, X., Xu, Z., Xu, H., & Liu, K. (2018). Poly-γ-glutamic acid, a bio-chelator, alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L. seedling. Environmental Science and Pollution Research, 1-14.
Park, Y., Lee, J. Y., Na, W. J., Kim, R. H., Choi, P. S., & Jun, S. C. (2013). A Review on Identification Methods for TCE Contamination Sources using Stable Isotope Compositions. Journal of Soil and Groundwater Environment, 18(3), 1-10.
Parween, T., Bhandari, P., Sharma, R., Jan, S., Siddiqui, Z. H., & Patanjali, P. K. (2018). Bioremediation: A Sustainable Tool to Prevent Pesticide Pollution. In Modern Age Environmental Problems and their Remediation (pp. 215-227). Springer, Cham.
Peng, X., Nguyen, A., & Ghosh, D. (2018). Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR. Journal of virological methods, 252, 100-107.
Pham, V. H. T., Jeong, S., Chung, S., & Kim, J. (2016). Brevundimonas albigilva sp. nov., isolated from forest soil. International journal of systematic and evolutionary microbiology, 66(3), 1144-1150.
Philips, J., Maes, N., Springael, D., & Smolders, E. (2013). Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells. Journal of contaminant hydrology, 147, 25-33.
Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246-1259.
Rabemanolontsoa, H., Van Nguyen, D., Jusakulvjit, P., & Saka, S. (2017). Effects of gas condition on acetic acid fermentation by Clostridium thermocellum and Moorella thermoacetica (C. thermoaceticum). Applied microbiology and biotechnology, 101(17), 6841-6847.
Ramadas, M., Ojha, R., & Govindaraju, R. S. (2013). Current and future challenges in groundwater. II: water quality modeling. Journal of Hydrologic Engineering, 20(1), A4014008.
Ramprakash, B., & Muthukumar, K. (2018). Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii. International Journal of Hydrogen Energy, 43(19), 9254-9258.
Rout, S. P., Salah, Z. B., Charles, C. J., & Humphreys, P. N. (2017). Whole-Genome Sequence of the Anaerobic Isosaccharinic Acid Degrading Isolate, Macellibacteroides fermentans Strain HH-ZS. Genome biology and evolution, 9(8), 2055-2059.
Saiyari, D.M., Chuang, H.-P., Senoro, D.B., Lin, T.-F., Whang, L.-M., Chiu, Y.-T., Chen, Y.-H., 2018a. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustainable Environment Research.
Saiyari, D.M., Chuang, H.-P., Senoro, D.B., Lin, T.-F., Whang, L.-M., Chiu, Y.-T., Chen, Y.-H., 2018b. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustainable Environment Research 28, 149-157.
Satola, B., Wübbeler, J.H., Steinbüchel, A., 2013. Metabolic characteristics of the species Variovorax paradoxus. Applied microbiology and biotechnology 97, 541-560.
Shahi, A., Aydin, S., Ince, B., Ince, O., 2016. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety 125, 153-160.
Shankar, S., 2017. Renewable and Nonrenewable Energy Resources: Bioenergy and Biofuels. Principles and Applications of Environmental Biotechnology for a Sustainable Future. Springer, pp. 293-314.
Shapiro, A.M., Tiedeman, C.R., Imbrigiotta, T.E., Goode, D.J., Hsieh, P.A., Lacombe, P.J., DeFlaun, M.F., Drew, S.R., Curtis, G.P., 2018. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix. Groundwater 56, 317-336.
Sharma, J.K., Gautam, R.K., Nanekar, S.V., Weber, R., Singh, B.K., Singh, S.K., Juwarkar, A.A., 2017. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environmental Science and Pollution Research, 1-21.
Sheu, Y.-T., Tsang, D.C., Dong, C.-D., Chen, C.-W., Luo, S.-G., Kao, C.-M., 2017. Enhanced Bioremediation of TCE-contaminated Groundwater Using Gamma Poly-glutamic Acid as the Primary Substrate. Journal of Cleaner Production.
Sheu, Y.-T., Tsang, D.C., Dong, C.-D., Chen, C.-W., Luo, S.-G., Kao, C.-M., 2018. Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production 178, 108-118.
Sheu, Y., Chen, S., Chien, C., Chen, C., Kao, C., 2015. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. Journal of hazardous materials 284, 222-232.
Shimodaira, J., Yonezuka, K., Tabata, M., Nagase, S., Kasai, D., Hosoyama, A., Yamazoe, A., Fujita, N., Fukuda, M., 2016. Draft genome sequence of Comamonas thiooxydans strain PHE2-6 (NBRC 110656), a chlorinated-ethene-degrading bacterium. Genome announcements 4, e00487-00416.
Singha, L.P., Kotoky, R., Pandey, P., 2017. Draft Genome Sequence of Pseudomonas fragi Strain DBC, Which Has the Ability To Degrade High-Molecular-Weight Polyaromatic Hydrocarbons. Genome announcements 5, e01347-01317.
Song, J., Chen, L., Chen, H., Sheng, F., Xing, D., Li, L., Zhang, Y., Rittmann, B., 2018. Characterization and high-throughput sequencing of a trichlorophenol-dechlorinating microbial community acclimated from sewage sludge. Journal of Cleaner Production.
Sopena, S., Godoy, C., Tabernero, D., Homs, M., Gregori, J., Riveiro-Barciela, M., Ruiz, A., Esteban, R., Buti, M., Rodríguez-Frías, F., 2018. Quantitative characterization of hepatitis delta virus genome edition by next-generation sequencing. Virus research 243, 52-59.
Srirattana, S., Piaowan, K., Lowry, G.V., Phenrat, T., 2017. Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Chemosphere 183, 323-331.
Srivastava, S., 2015. Bioremediation technology: a greener and sustainable approach for restoration of environmental pollution. Applied Environmental Biotechnology: Present Scenario and Future Trends. Springer, pp. 1-18.
Stevenson, A., 2018. Role of Zero Valent Iron and Organic Substrates in Chlorinated Solvent Degradation: An Ex-Situ Remediation Case Study. The University of Western Ontario.
Takada, T., Watanabe, K., Makino, H., Kushiro, A., 2016. Reclassification of Eubacterium desmolans as Butyricicoccus desmolans comb. nov., and description of Butyricicoccus faecihominis sp. nov., a butyrate-producing bacterium from human faeces. International journal of systematic and evolutionary microbiology 66, 4125-4131.
Valderrama, E., Richardson, J.E., Kidner, C.A., Madriñán, S., Stone, G.N., 2018. Transcriptome mining for phylogenetic markers in a recently radiated genus of tropical plants (Renealmia Lf, Zingiberaceae). Molecular phylogenetics and evolution 119, 13-24.
Veeravalli, S.S., Lalman, J.A., Chaganti, S.R., Heath, D.D., 2017. Continuous hydrogen production using upflow anaerobic sludge blanket reactors: effect of organic loading rate on microbial dynamics and H2 metabolism. Journal of Chemical Technology and Biotechnology 92, 544-551.
Viggor, S., Jõesaar, M., Vedler, E., Kiiker, R., Pärnpuu, L., Heinaru, A., 2015. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. Marine pollution bulletin 101, 507-516.
WANG, H.-b., CHENG, M., SHENG, J., YANG, Y.-y., LI, S.-h., YAN, B.-l., 2011. Study on the Adsorption Characteristic of Metal Ions on Gelatin Membrane Cross-linked Poly-γ-glutamic Acid. Hubei Agricultural Sciences 19, 021.
Wang, L., Hu, D., Kong, X., Liu, J., Li, X., Zhou, K., Zhao, H., Zhou, C., 2018a. Anionic polypeptide poly (γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd (II), Cu (II) and Ni (II) heavy metal ions. Chemical Engineering Journal 346, 38-49.
Wang, S.-y., 2017. Development of blocked bio-gel substrate and buffered colloidal substrate to remediate DNAPL contaminated unsaturated and saturated zones.
Wang, S., Chen, S., Lin, Y., Kuo, Y., Chen, J., Kao, C., 2016. Acidification and sulfide formation control during reductive dechlorination of 1, 2-dichloroethane in groundwater: Effectiveness and mechanistic study. Chemosphere 160, 216-229.
Wang, S., Qiu, L., Liu, X., Xu, G., Siegert, M., Lu, Q., Juneau, P., Yu, L., Liang, D., He, Z., 2018b. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology advances.
Watson, D.B., Wu, W.-M., Mehlhorn, T., Tang, G., Earles, J., Lowe, K., Gihring, T.M., Zhang, G., Phillips, J., Boyanov, M.I., 2013. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. Environmental science & technology 47, 6440-6448.
Weinstein, J.Y., Slutzki, M., Karpol, A., Barak, Y., Gul, O., Lamed, R., Bayer, E.A., Fried, D.B., 2015. Insights into a type III cohesin–dockerin recognition interface from the cellulose‐degrading bacterium Ruminococcus flavefaciens. Journal of Molecular Recognition 28, 148-154.
Wen, C., Sheng, H., Ren, L., Dong, Y., Dong, J., 2017. Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil. Process Safety and Environmental Protection 109, 599-608.
Wesseldyke, E.S., Becker, J.G., Seagren, E.A., Mayer, A.S., Zhang, C., 2015. Numerical modeling analysis of hydrodynamic and microbial controls on DNAPL pool dissolution and detoxification: Dehalorespirers in co-culture. Advances in water resources 78, 112-125.
Xu, L., Shi, W., Zeng, X.-C., Yang, Y., Zhou, L., Mu, Y., Liu, Y., 2017. Draft genome sequence of Arthrobacter sp. strain B6 isolated from the high-arsenic sediments in Datong Basin, China. Standards in genomic sciences 12, 11.
Yan, J., Şimşir, B., Farmer, A.T., Bi, M., Yang, Y., Campagna, S.R., Löffler, F.E., 2015. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. The ISME journal 10, 1092.
Yang, J., Kim, E., Kim, J., Poo, H., 2018. Orally administered poly-γ-glutamic acid enhances mucosal immune responses through production of intestinal chemokines and activation of mucosal dendritic cells. Am Assoc Immnol.
Yang, Y., Higgins, S.A., Yan, J., Şimşir, B., Chourey, K., Iyer, R., Hettich, R.L., Baldwin, B., Ogles, D.M., Löffler, F.E., 2017. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. The ISME journal 11, 2767.
Yang, Z.-H., Dong, C.-D., Chen, C.-W., Sheu, Y.-T., Kao, C.-M., 2017. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 1-12.
Yu, H., Zhao, S., Lu, W., Wang, W., Guo, L., 2018. A novel gene, encoding 3-aminobenzoate 6-monooxygenase, involved in 3-aminobenzoate degradation in Comamonas sp. strain QT12. Applied microbiology and biotechnology, 1-10.
Yu, J., Park, Y., Nguyen, V.K., Lee, T., 2016. PCE dechlorination by non-Dehalococcoides in a microbial electrochemical system. Journal of industrial microbiology & biotechnology 43, 1095-1103.
Zalesak, M., Ruzicka, J., Vícha, R., Dvorackova, M., 2017. Cometabolic degradation of dichloroethenes by Comamonas testosteroni RF2. Chemosphere 186, 919-927.
Zhao, H., Sun, W., Wu, X., Gao, B., 2017. The effect of the material factors on the concrete resistance against carbonation. KSCE Journal of Civil Engineering, 1-10.
Zhou, J., Xing, J., 2015. Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors. Biochemical engineering journal 96, 14-22.
方彥程, 黃國典, 王證凱, 許哲嘉, 張立鵬, & 張耿榕. (2016). 地下水含氯有機物污染場址實場整治案例分析. 土壤及地下水污染整治, 3(2), 137-149.
黃加年, 2016. 以複合型碳源基質加強 1, 2-二氯乙烷之厭氧降解成效. 中山大學環境工程研究所學位論文, 1-107.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.249.73
論文開放下載的時間是 校外不公開

Your IP address is 3.142.249.73
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code