Responsive image
博碩士論文 etd-0729118-165446 詳細資訊
Title page for etd-0729118-165446
論文名稱
Title
硫酸鹽還原反應抑制對三氯乙烯還原脫氯成效強化之成效評估
Effectiveness of sulfate reduction inhibition on the enhancement of trichloroethylene dechlorination
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-08-29
關鍵字
Keywords
生物刺激、硫酸鹽還原菌抑制劑、產氫菌、硫酸鹽還原菌、三氯乙烯
bio-stimulation agents., inhibitor of SRB, Clostridium sp., sulfate-reducing bacteria (SRB), trichloroethylene (TCE)
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
三氯乙烯(trichloroethylene, TCE)是一種具有潛在致癌性之揮發性有機化合物。由於三氯乙烯的水溶性低且密度大於水,故當三氯乙烯釋放到含水層後,會下沉、擴散到較低水力傳導區域並緩慢的溶解到地下水,進而形成重質非水相液體之污染源區域。Dehalococcoides (Dhc屬)是目前所知能夠在厭氧及中性pH之環境條件下,將含氯有機物還原脫氯至無毒乙烯之菌種,惟Dhc屬之還原性脫鹵素酶有多種的基因(pceA、tceA、bvcA、vcrA),分別催化不同的生化反應,這些脫鹵素酶是藉由氫氣(H2)的氧化作用獲取能量。當Dhc屬還原脫氯含氯有機物時,硫酸鹽還原菌(sulfate-reducing bacteria, SRB)之存在會抑制Dhc屬之生長且會造成氯乙烯及順式二氯乙烯(cis-dichloroethylene, cis-DCE)之累積問題。本研究添加檸檬酸鐵[Fe (III)]及鉬酸鈉[Mo (VI)]兩種SRB抑制劑之結果顯示,在添加不同的SRB抑制劑及不同濃度進行厭氧生物還原脫氯試驗,含氯有機物降解所產生的副產物(氯乙烯)有降低,而乙烯則有上升之趨勢。接著探討較佳的SRB抑制劑種類及較適當的添加量,並以分子生物技術對批次實驗之Dhc屬、產氫菌及SRB或其他菌群變化進行評估。在分別添加Fe (III)及Mo (VI)抑制劑所測得的SRB菌量顯示,添加Fe(III) 0.6 mM及Mo(VI) 0.5 mM抑制劑時,可有效抑制SRB生長及有最佳之三氯乙烯降解效果,能減少SRB對基質與電子的消耗,增進Dhc屬之還原脫氯作用,改善副產物cis-DCE及氯乙烯之累積。本實驗成果有助於發展一套迅速有效之強化生物復育整治之綠色工法,供相關污染場址整治之應用。
Abstract
Trichloroethylene (TCE) is a potentially carcinogenic volatile organic compound (VOC). Because TCE (with the density of greater than water) is low in water solubility, it will sink and diffuse into the lower hydraulic conduction zone and, then, will be slowly dissolved into the groundwater when releasing into the aquifer. Thus, TCE will form a dense non-aqueous phase liquid (DNAPL) in the pollution source area.It is known that Dehalococcoides (Dhc) are capable of dechlorinating TCE to non-toxic ethylene under anaerobic and neutral pH environments. Nonetheless, the genus Dhc (i.e., belongs to class Dehalococcoidia) with multiple reductive dehalogenase genes (pceA, tceA, bvcA and vcrA) can catalyze different biochemical reactions. The reductive dehalogenase genes obtain its energy via the oxidation of H2. During the anaerobic reductive dechlorination of chlorine-containing organic compounds, the existence of sulfate-reducing bacteria (SRB) can inhibit the growth of the genus Dhc and, thereby, cause the accumulation of vinyl chloride and cis-dichloroethylene (cis-DCE).In the present study, two chemicals (ferric citrate and sodium molybdate) for inhibiting the growth of SRB were used. The results showed that, during the dechlorination of chlorine-containing organic compounds, the concentration of vinyl chloride declined whereas the concentration non-toxic ethylene increased.Moreover, batch experiments were conducted to determine a better SRB inhibitor and an adequate dosing concentration of the inhibitor. Additionally, molecular biotechnology was also used to evaluate the prevalence of occurrence among the genus Dhc, hydrogen-producing bacteria and SRB.The addition of Fe(III) 0.6 mM and Mo(VI) 0.5 mM could effectively inhibit SRB. However, complete inhibition of SRB would not be beneficial to Dhc growth because SRB can provide trace growth elements, enhance Dhc for complete reduction and dechlorination. In this study, the addition of SRB inhibitors can reduce the consumption of matrix and electrons by SRB, and increase the content of Dhc, thereby reducing the accumulation of cis-DCE and VC, and achieving the effect of complete reduction and dechlorination.Results from this study will be helpful in developing a green remedial methods to enhance the reductive dechlorination of TCE and the developed techniques can be applied at other TCE-spill sites.
目次 Table of Contents
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1研究源起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 含氯碳氫化合物污染概況 3
2.2 土壤地下水整治技術 6
2.3 三氯乙烯之特性 9
2.4 三氯乙烯之生物反應機制 13
2.4.1 三氯乙烯之好氧生物降解 13
2.4.2 三氯乙烯之厭氧生物降解 16
2.5 基質之特性介紹 18
2.5.1 聚麩胺酸(γ-PGA)之基本特性 18
2.5.2 γ-PGA在環境上之應用 19
2.5.3不同基質於土壤之地下水之應用性 20
2.6 Dehalococcoides之特性介紹 21
2.7 硫酸還原菌 26
2.7.1硫酸還原菌(sulfate-reducing bacteria,SRB)概況 26
2.7.2硫酸還原菌與產氫菌及脫氯菌之相互關係 30
2.8抑制硫酸鹽介紹 33
2.8.1抑制硫酸鹽之機制介紹 33
2.8.2抑制硫酸鹽之藥劑 35
2.9分子生物在地下水生物復育之應用 37
2.9.1降解含氯乙烯類之菌種與基因 38
第三章 實驗設備與方法 40
3.1 研究流程 40
3.2.1 實驗材料 42
3.2.2 實驗設備 43
3.2.3配置污染地下水及馴養污泥 43
3.2.4硫酸還原菌馴養 44
3.2.5脫氯球菌馴養 45
3.2.6聚麩酸胺 47
3.3實驗設計 47
3.3.1產氫菌前導最佳配比試驗 47
3.3.2 厭氧微生物批次實驗 47
3.4實驗分析項目 48
3.4.1 水質分析 48
3.5分子生物分析 50
3.5.1微生物DNA萃取 50
3.5.2 DNA純化 51
3.5.3即時定量PCR (realtime-PCR,qPCR) 52
第四章 結果與討論 56
4.1 產氫菌最佳化試驗 56
4.1.1 不同比例產氫菌之TCE濃度變化及副產物變化 56
4.1.2 不同比例產氫菌之微生物功能基因分析 (qPCR) 59
4.1.3 不同比例產氫菌之硫酸鹽(SO42-)及硫化物(HS-)濃度變化 62
4.1.4 不同比例產氫菌之pH、DO、ORP及TOC之數值變化 64
4.2 添加硫酸鹽組別 67
4.2.1 添加硫酸鹽組別之TCE濃度變化及副產物變化 67
4.2.2 添加硫酸鹽組別之微生物功能基因分析 (qPCR) 68
4.2.3 添加硫酸鹽組別之硫酸鹽(SO42-)及硫化物(HS-)濃度變化 70
4.2.4 添加硫酸鹽組別之pH、DO、ORP及TOC之數值變化 72
4.3添加SRB抑制劑(Fe3+)批次實驗組別 74
4.3.1 添加SRB抑制劑(Fe3+)之TCE濃度變化及副產物變化 74
4.3.2 添加SRB抑制劑(Fe3+)之微生物功能基因分析(qPCR) 77
4.3.3 添加SRB抑制劑(Fe3+)之硫酸鹽(SO42-)及硫化物(HS-)濃度變化 79
4.3.4 添加SRB抑制劑(Fe3+)之pH、DO、ORP及TOC之數值變化 81
4.4 添加SRB抑制劑(MoO42-)批次實驗組別 84
4.4.1 添加SRB抑制劑(MoO42-)之TCE濃度變化及副產物變化 84
4.4.2 添加SRB抑制劑(MoO42-)之微生物功能基因分析(qPCR) 86
4.4.3 添加SRB抑制劑(MoO42-)之硫酸鹽(SO42-)及硫化物(HS-)濃度變化 88
4.4.4 添加SRB抑制劑(MoO42-)之pH、DO、ORP及TOC之數值變化 90
4.5 各組別最佳配比之微生物功能基因分析(qPCR)綜合比較 92
第五章 結論與建議 96
5.1 結論 96
5.2 建議 97
參考文獻 98
參考文獻 References
Abe, Y., Aravena, R., Zopfi, J., Shouakar-Stash, O., Cox, E., Roberts, J. D., & Hunkeler, D. (2008). Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1, 2-dichloroethene. Environmental science & technology, 43(1), 101-107.
Adrian, L., Dudková, V., Demnerová, K., & Bedard, D. L. (2009). “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Applied and environmental microbiology, 75(13), 4516-4524.
Adrian, L., Szewzyk, U., Wecke, J., & Görisch, H. (2000). Bacterial dehalorespiration with chlorinated benzenes. Nature, 408(6812), 580.
Aguilar-Barajas, E., Díaz-Pérez, C., Ramírez-Díaz, M. I., Riveros-Rosas, H., & Cervantes, C. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals, 24(4), 687-707.
Air Force Center for Engineering and the Environment; Massachusetts Military Reservation Cape Code, Groundwater Plume Maps & Information Booklet. 2007.
Alder, A. C., Haggblom, M. M., Oppenheimer, S. R., & Young, L. Y. (1993). Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environmental science & technology, 27(3), 530-538.Flooded Paddy Soil. Frontiers in microbiology, 9, 567.
Angermeyer, A., Crosby, S. C., & Huber, J. A. (2016). Decoupled distance–decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate‐reducing bacteria. Environmental microbiology, 18(1), 75-86.
Antizar-Ladislao, B., (2010). Bioremediation: working with bacteria. Elements 6, 389–394.
Atashgahi, S., Lu, Y., Smidt, H. (2016). Overview of known organohalide-respiring bacteria—phylogenetic diversity and environmental distribution. In Organohalide-Respiring Bacteria. Springer Berlin Heidelberg,63-105.
Aulenta, F., Beccari, M., Majone, M., Papini, M. P., & Tandoi, V. (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43(2), 161-168.
Aulenta, F., Majone, M., & Tandoi, V. (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81(9), 1463-1474.
Bagley, D. M., & Gossett, J. M. (1990). Tetrachloroethene transformation to trichloroethene and cis-1, 2-dichloroethene by sulfate-reducing enrichment cultures. Applied and Environmental Microbiology, 56(8), 2511-2516.
Bajaj, I., & Singhal, R. (2011). Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresource technology, 102(10), 5551-5561.
Behrens, S., Azizian, M. F., McMurdie, P. J., Sabalowsky, A., Dolan, M. E., Semprini, L., & Spormann, A. M. (2008). Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Applied and environmental microbiology, 74(18), 5695-5703.
Ben-Dov, E., Brenner, A., & Kushmaro, A. (2007). Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbial ecology, 54(3), 439-451.
Bennett, P., Gandhi, D., Warner, S., & Bussey, J. (2007). In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. Journal of hazardous materials, 149(3), 568-573.
Bilgin, A., & Jaffé, P. R. (2018). Precipitation of Copper (II) in a Two-Stage Continuous Treatment System Using Sulfate Reducing Bacteria. Waste and Biomass Valorization, 1-8.
Biswas, K. C., Woodards, N. A., Xu, H., & Barton, L. L. (2009). Reduction of molybdate by sulfate-reducing bacteria. Biometals, 22(1), 131-139.
Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource technology, 74(1), 63-67.
Boopathy, R., & Peters, R. (2001). Enhanced biotransformation of trichloroethylene under mixed electron acceptor conditions. Current microbiology, 42(2), 134-138.
Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., & Campbell, K. (2009). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental science & technology, 44(1), 15-23.
Borden, R.C., & Rodriguez, B.X. (2006) “Evaluation of slow release substrates for anaerobic bioremediation”, Bioremediation Journal, 10(1-2), 59-69.
Bouwer, E. J., & McCarty, P. L. (1983). Transformations of halogenated organic compounds under denitrification conditions. Applied and Environmental Microbiology, 45(4), 1295-1299.
Bradley, P. M. (2003). History and ecology of chloroethene biodegradation: a review. Bioremediation Journal, 7(2), 81-109.
Broholm, K., Ludvigsen, L., Jensen, T. F., & Østergaard, H. (2005). Aerobic biodegradation of vinyl chloride and cis-1, 2-dichloroethylene in aquifer sediments. Chemosphere, 60(11), 1555-1564.
Bunge, M., Wagner, A., Fischer, M., Andreesen, J. R., & Lechner, U. (2008). Enrichment of a dioxin‐dehalogenating Dehalococcoides species in two‐liquid phase cultures. Environmental Microbiology, 10(10), 2670-2683.
Čanković, M., Petrić, I., Marguš, M., Ciglenečki, I. (2017). Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis. Journal of Marine Systems, 172, 14-23.
Carmona, M., Zamarro, M. T., Blázquez, B., Durante-Rodríguez, G., Juárez, J. F., Valderrama, J. A., ... & Díaz, E. (2009). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews, 73(1), 71-133.
Celik, G., Ailawar, S., Sohn, H., Tang, Y., Tao, F. F., Miller, J. T., ... & Ozkan, U. S. (2018). Swellable Organically-modified Silica (SOMS) as a Catalyst Scaffold for Catalytic Treatment of Water Contaminated with Trichloroethylene. ACS Catalysis.
Center, A. F. C. E. (2004). Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents.
Chang, J., Zhong, Z., Xu, H., Yao, Z., & Chen, R. (2013). Fabrication of poly (γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal. Chinese Journal of Chemical Engineering, 21(11), 1244-1250.
Chapelle, F. H., & Lovley, D. R. (1992). Competitive exclusion of sulfate reduction by Fe (lll)‐reducing bacteria: a mechanism for producing discrete zones of high‐iron ground water. Groundwater, 30(1), 29-36.
Chen, K. F., Kao, C. M., Chen, T. Y., Weng, C. H. and Tsai, C. T. (2006). Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environ. Geol., 50, 439–445.
Chen, M., Abriola, L. M., Amos, B. K., Suchomel, E. J., Pennell, K. D., Löffler, F. E., & Christ, J. A. (2013). Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis. Journal of contaminant hydrology, 151, 117-130.
Chen, M., Liu, C., Li, X., Huang, W., & Li, F. (2014). Iron reduction coupled to reductive dechlorination in red soil: a review. Soil Science, 179(10-11), 457-467.
Chen, M., Tao, L., Li, F., & Lan, Q. (2014). Reductions of Fe (III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Geoderma, 217, 201-211.
Chen, R., Liu, H., Tong, M., Zhao, L., Zhang, P., Liu, D., & Yuan, S. (2018). Impact of Fe (II) oxidation in the presence of iron-reducing bacteria on subsequent Fe (III) bio-reduction. Science of The Total Environment, 639, 1007-1014.
Chen, W. F. and Liu, T. K. (2005). Ion activity products of iron sulfides in groundwaters: implications from the Choshui fan-delta, western Taiwan.Geochim Cosmochim Acta 69,3535–3544.
Chen, Y. M., Lin, T. F., Huang, C., & Lin, J. C. (2008). Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere, 72(11), 1671-1680.
Cheng, M., Zeng, G., Huang, D., Yang, C., Lai, C., Zhang, C., & Liu, Y. (2018). Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Critical reviews in biotechnology, 38(1), 17-30.
Chiu, D. W. (2015). Using poly-glutamic acid to enhance the anaerobic dechlorination of trichloroethylene (Doctoral dissertation, MS Thesis, Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan).
Chiu, Y. T., Chiu, C. P., Chien, J. T., Ho, G. H., Yang, J., & Chen, B. H. (2007). Encapsulation of lycopene extract from tomato pulp waste with gelatin and poly (γ-glutamic acid) as carrier. Journal of agricultural and food chemistry, 55(13), 5123-5130.
Cichocka, D., Nikolausz, M., Haest, P. J., & Nijenhuis, I. (2010). Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS microbiology ecology, 72(2), 297-310.
Coates, J. D., & Achenbach, L. A. (2001). The biogeochemistry of aquifer systems. Manual of environmental microbiology, 2nd ed. ASM Press, Washington, DC, 719-727.
Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of hazardous materials, 211, 112-125.
Crimi, M., & Holsen, T. (2017). In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed Contaminants (ISCO SC). Clarkson University Potsdam United States.
Dang, J. M., & Leong, K. W. (2007). Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Advanced materials, 19(19), 2775-2779.
de Jesus, E. B., de Andrade Lima, L. R. P., Bernardez, L. A., & Almeida, P. F. (2015). Inhibition of microbial sulfate reduction by molybdate. Brazilian Journal of Petroleum and Gas, 9(3). Inhibition of microbial sulfate reduction by molybdate.
De Wildeman, S., Diekert, G., Van Langenhove, H., & Verstraete, W. (2003). Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Applied and Environmental Microbiology, 69(9), 5643-5647.
De Wit, R., & Bouvier, T. (2006). ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say. Environmental microbiology, 8(4), 755-758.
Delgado, A. G., Fajardo-Williams, D., Bondank, E., Esquivel-Elizondo, S., & Krajmalnik-Brown, R. (2017). Coupling Bioflocculation of Dehalococcoides mccartyi to High-Rate Reductive Dehalogenation of Chlorinated Ethenes. Environmental science & technology, 51(19), 11297-11307.
Devereux, R., Delaney, M., Widdel, F., & Stahl, D. A. (1986). Natural relationships among sulfate-reducing eubacteria. Journal of Bacteriology, 171(12), 6689-6695.
Devereux, R., Delaney, M., Widdel, F., & Stahl, D. A. (1989). Natural relationships among sulfate-reducing eubacteria. Journal of Bacteriology, 171(12), 6689-6695.
Devlin, J.F., Katic, D. and Barker, J.F. (2004). In situ sequenced bioremediation of mixed contaminants in groundwater. J. Contam. Hydrol., 69, 233-261
Dobosy, P., Vizsolyi, É. C., Varga, I., Varga, J., Láng, G. G., & Záray, G. (2016). Trichloroethylene removal from water by ferrate treatment. Microchemical Journal, 127, 74-78.
Dong, S., Feng, C., Cui, W., Chen, N., Liu, Y., & Liu, T. (2018). Anaerobic Bioremediation Performance and Indigenous Microbial Communities in Treatment of Trichloroethylene/Nitrate-Contaminated Groundwater. Environmental Engineering Science, 35(4), 311-322.
Duan, J., Wu, S., Zhang, X., Huang, G., Du, M., & Hou, B. (2008). Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochimica Acta, 54(1), 22-28.
Dugat-Bony, E., Peyret, P., Biderre-Petit, C. (2016). New Insights into the Microbial Contribution to the Chlorine Cycle in Aquatic Ecosystems. In Lake Pavin, 285-306, Springer International Publishing.
Duhamel, M., Mo, K., & Edwards, E. A. (2004). Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied and Environmental Microbiology, 70(9), 5538-5545.
El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation?. Current opinion in microbiology, 8(3), 268-275.
Ellis, D. E., Lutz, E. J., Odom, J. M., Buchanan, R. J., Bartlett, C. L., Lee, M. D., ... & DeWeerd, K. A. (2000). Bioaugmentation for accelerated in situ anaerobic bioremediation. Environmental science & technology, 34(11), 2254-2260.
Esposito, G., Weijma, J., Pirozzi, F., & Lens, P. N. L. (2003). Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochemistry, 39(4), 491-498.
Fang, H.H.P., Liu, Y., Chen, T., (1997). Effect of sulfate on anaerobic degradation of benzoate in UASB reactors. Journal of Environmental Engineering-Asce 123, 325-327.
Fennell, D.E., Gossett, J.M., Zinder, S.H. (1997). Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environmental Science & Technology, 31(3), 918-926.
Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: a review. Journal of hazardous materials, 283, 382-399.
Freitas, J. G., Rivett, M. O., Roche, R. S., Durrant, M., Walker, C., & Tellam, J. H. (2015). Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Science of the Total Environment, 505, 236-252.
Friesen, M. C., Locke, S. J., Chen, Y. C., Coble, J. B., Stewart, P. A., Ji, B. T., ... & Lan, Q. (2014). Historical occupational trichloroethylene air concentrations based on inspection measurements from Shanghai, China. Annals of Occupational Hygiene, 59(1), 62-78.
Futagami, T., Goto, M., & Furukawa, K. (2008). Biochemical and genetic bases of dehalorespiration. The chemical record, 8(1), 1-12.
Garbisu, C., Garaiyurrebaso, O., Epelde, L., Grohmann, E., & Alkorta, I. (2017). Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Frontiers in microbiology, 8, 1966.
Gerritse, J., Renard, V., Gomes, T.M.P., Lawson, P.A., Collins, M.D., Gottschal, J.C. (1996). Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology, 165, 132-140.
Glauser, J., & Ishikawa, Y. (2008). C2 Chlorinated Solvents. In CEH Marketing Research Report. Menlo Park, CA: SRI Consulting.
Gossett, J. M. (2010). Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environmental Science & Technology, 44(4), 1405-1411.
Gossett, J. M. (2010). Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environmental Science & Technology, 44(4), 1405-1411.
Greening, C., Berney, M., Hards, K., Cook, G. M., & Conrad, R. (2014). A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proceedings of the National Academy of Sciences, 111(11), 4257-4261.
Griebler, C., & Lueders, T. (2009). Microbial biodiversity in groundwater ecosystems. Freshwater Biology, 54(4), 649-677.
Guerrero-Barajas, C., Garibay-Orijel, C., & Rosas-Rocha, L. E. (2011). Sulfate reduction and trichloroethylene biodegradation by a marine microbial community from hydrothermal vents sediments. International biodeterioration & biodegradation, 65(1), 116-123.
He, J., Ritalahti, K. M., Aiello, M. R., & Löffler, F. E. (2003). Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 69(2), 996-1003.
He, J., Sung, Y., Krajmalnik‐Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)‐and 1, 2‐dichloroethene‐respiring anaerobe. Environmental Microbiology, 7(9), 1442-1450.
Heidelberg, J. F., Seshadri, R., Haveman, S. A., Hemme, C. L., Paulsen, I. T., Kolonay, J. F., ... & Daugherty, S. C. (2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature biotechnology, 22(5), 554.
Heider, J. (2007). Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol, 11, 188–194.
Ho, G. H., Ho, T. I., Hsieh, K. H., Su, Y. C., Lin, P. Y., Yang, J., ... & Yang, S. C. (2006). γ‐Polyglutamic Acid Produced by Bacillus Subtilis (Natto): Structural Characteristics, Chemical Properties and Biological Functionalities. Journal of the Chinese Chemical Society, 53(6), 1363-1384.
Hoelen, T. P., & Reinhard, M. (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15(6), 395-403.
Hölscher, T., Krajmalnik-Brown, R., Ritalahti, K. M., Von Wintzingerode, F., Görisch, H., Löffler, F. E., & Adrian, L. (2004). Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Applied and environmental microbiology, 70(9), 5290-5297.
Hubert, C., Nemati, M., Jenneman, G., & Voordouw, G. (2005). Corrosion risk associated with microbial souring control using nitrate or nitrite. Applied microbiology and biotechnology, 68(2), 272-282.
Hurst, C. J., Crawford, R. L., Garland, J. L., & Lipson, D. A. (Eds.). (2007). Manual of environmental microbiology. American Society for Microbiology Press.
Inbaraj, B. S., Chien, J. T., Ho, G. H., Yang, J., & Chen, B. H. (2006). Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly (γ-glutamic acid). Biochemical Engineering Journal, 31(3), 204-215.
Isa, M. H., & Anderson, G. K. (2005). Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochemistry, 40(6), 2079-2089.
Jalali, K., & Baldwin, S. A. (2000). The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Water Research, 34(3), 797-806.
Jennings, S., Russell, N. C., Jennings, B., Slee, V., Sterling, L., Castells, M. C., Valent, P., Akin, C. (2013). The Mastocytosis Society survey on mast cell disorders: patient experiences and perceptions. Journal of Allergy and Clinical Immunology, 131(2), AB116.
Jiang, Y., Chen, J., Yue, C., Zhang, H., & Chen, T. (2016). Trichloroethylene-induced DNA methylation changes in male F344 rat liver. Chemical research in toxicology, 29(10), 1773-1777.
Kamalaskar, L. B., Dhakephalkar, P. K., Meher, K. K., & Ranade, D. R. (2010). High biohydrogen yielding Clostridium sp. DMHC-10 isolated from sludge of distillery waste treatment plant. International journal of hydrogen energy, 35(19), 10639-10644.
Kao, C.M., Prosser, J. (1999). Inrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. Journal of Hazardous Materials, 69, 67-79.
Kappler, A., & Straub, K. L. (2005). Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry, 59(1), 85-108.
Kassenga, G., Pardue, J. H., Moe, W. M., & Bowman, K. S. (2004). Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands. Environmental science & technology, 38(4), 1024-1030.
Kato, S., Yoshida, R., Yamaguchi, T., Sato, T., Yumoto, I., & Kamagata, Y. (2017). interaction The effects between of elevated aceticlastic CO2 concentration and syntrophic. Development of Microbial Ecological Theory: Stability, Plasticity, and Evolution of Microbial Ecosystems, 41.
Kiran, M. G., Pakshirajan, K., & Das, G. (2017). Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization. Journal of hazardous materials, 324, 62-70.
Koenig, J. C., Boparai, H. K., Lee, M. J., O’Carroll, D. M., Barnes, R. J., & Manefield, M. J. (2016). Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. Journal of hazardous materials, 308, 106-112.
Kouznetsova, I., Mao, X., Robinson, C., Barry, D. A., Gerhard, J. I., & McCarty, P. L. (2010). Biological reduction of chlorinated solvents: Batch-scale geochemical modeling. Advances in Water Resources, 33(9), 969-986.
Krajmalnik-Brown, R., Hölscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., & Löffler, F. E. (2004). Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Applied and Environmental Microbiology, 70(10), 6347-6351.
Kranzioch, I., Ganz, S., & Tiehm, A. (2015). Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. Environmental Science and Pollution Research, 22(4), 3138-3148.
Kruse, T., van de Pas, B. A., Atteia, A., Krab, K., Hagen, W. R., Goodwin, L., ... & de Vos, W. M. (2015). Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. Journal of bacteriology, 197(5), 893-904.
Kumavath, R. N., & Deverapalli, P. (2013). Scientific swift in bioremediation: an overview. Applied Bioremediation-Active and Passive Approaches, 375-388.
Lai, A., Aulenta, F., Mingazzini, M., Palumbo, M. T., Papini, M. P., Verdini, R., Majone, M. (2017). Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere, 169, 351-360.
Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., ... & Oakeshott, J. G. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58-80.
Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R., Giovannoni, S. J. (2017). SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8: e00413-17.
Lay, J. J., Tsai, C. J., Huang, C. C., Chang, J. J., Chou, C. H., Fan, K. S., ... & Hsu, P. C. (2005). Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Science and Technology, 52(1-2), 123-129.
Lee, P. K., Cheng, D., Hu, P., West, K. A., Dick, G. J., Brodie, E. L., ... & Alvarez-Cohen, L. (2011). Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. The ISME journal, 5(6), 1014.
Lee, P. K., Cheng, D., West, K. A., Alvarez‐Cohen, L., & He, J. (2013). Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environmental microbiology, 15(8), 2293-2305.
Leeson, A., Beevar, E., Henry, B., Fortenberry, J., & Coyle, C. (2004). Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents (No. NFESC-TR-2250-ENV). Naval Facilities Engineering Service Center Port Hueneme CA.
Lei, S. E. (2000). Cleanup TCE and PCE-contaminated Site Using Bioremediation Technology.
Lendvay, J. M., Löffler, F. E., Dollhopf, M., Aiello, M. R., Daniels, G., Fathepure, B. Z., ... & Krajmalnik-Brown, R. (2003). Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environmental Science & Technology, 37(7), 1422-1431.
Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yan, N., Warburton, M.L., Cheng, Y., Hao, X.,Liu, J. (2013). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature genetics, 45(1), 43-50.
Li, X., Dai, L., Zhang, C., Zeng, G., Liu, Y., Zhou, C., ... & Lan, S. (2017). Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. Journal of hazardous materials, 324, 340-347.
Li, X., Lan, S. M., Zhu, Z. P., Zhang, C., Zeng, G. M., Liu, Y. G., ... & Wu, S. H. (2018). The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicology and environmental safety, 158, 162-170.
Li, X., Wu, Y., Zhang, C., Liu, Y., Zeng, G., Tang, X., ... & Lan, S. (2016). Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron. Chemical Engineering Journal, 306, 393-400.
Li, Y., Abriola, L. M., Phelan, T. J., Ramsburg, C. A., & Pennell, K. D. (2007). Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization. Environmental science & technology, 41(23), 8135-8141.
Lien, P. J., Yang, Z. H., Chang, Y. M., Tu, Y. T., Kao, C. M. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: Effectiveness and mechanism study. Chemical Engineering Journal, 289, 525-536.
Lin, J., He, Y., & Xu, J. (2012). Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils. Environmental pollution, 170, 260-267.
Lin, K. S., Mdlovu, N. V., Chen, C. Y., Chiang, C. L., & Dehvari, K. (2018). Degradation of TCE, PCE, and 1, 2-DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of Cleaner Production, 175, 456-466.
Liu, B., Zhang, H., Lu, Q., Li, G., & Zhang, F. (2018). A Cu Ni bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of The Total Environment, 635, 1417-1425.
Liu, J., Lopez, N., Ahn, Y. B., Goldberg, T., Bromberg, Y., Kerkhof, L. J., & Häggblom, M. M. (2017). Novel Reductive Dehalogenases from the Marine Sponge Associated Bacterium Desulfoluna spongiiphila.Environmental Microbiology Reports.
Liu, Y., Illangasekare, T. H., & Kitanidis, P. K. (2014). Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals. Journal of contaminant hydrology, 157, 11-24.
Löffler, F. E., Tiedje, J. M., & Sanford, R. A. (1999). Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Applied and Environmental Microbiology, 65(9), 4049-4056.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., ... & Spormann, A. M. (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary microbiology, 63(2), 625-635.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., ... & Spormann, A. M. (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary microbiology, 63(2), 625-635.
Lovley, D. R., & Phillips, E. J. (1987). Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Environmental Microbiology, 53(11), 2636-2641.
Lovley, D. R., Holmes, D. E., & Nevin, K. P. (2004). Dissimilatory fe (iii) and mn (iv) reduction.
Low, A., Shen, Z., Cheng, D., Rogers, M. J., Lee, P. K., & He, J. (2015). A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a. Scientific reports, 5, 15204.
Lu, X. X., Tao, S., Bosma, T., & Gerritse, J. (2001). Characteristic hydrogen concentrations for various redox processes in batch study. Journal of Environmental Science and Health, Part A, 36(9), 1725-1734.
Luijten, M. L., Roelofsen, W., Langenhoff, A. A., Schraa, G., & Stams, A. J. (2004). Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environmental microbiology, 6(6), 646-650.
Lyon, D. Y., & Vogel, T. M. (2013). Bioaugmentation for groundwater remediation: an overview. In Bioaugmentation for Groundwater Remediation (pp. 1-37). Springer, New York, NY.
Macías-Díaz, J. E., Landry, R. E., & Puri, A. (2014). A finite-difference scheme in the computational modelling of a coupled substrate-biomass system. International Journal of Computer Mathematics, 91(10), 2199-2214.
Magnuson, J. K., Romine, M. F., Burris, D. R., & Kingsley, M. T. (2000). Trichloroethene reductive dehalogenase fromDehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Applied and Environmental Microbiology, 66(12), 5141-5147.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, 83(8), e03384-16.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). The Effects of sulfate reduction on TCE dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, AEM-03384.
Mao, X., Stenuit, B., Polasko, A., & Alvarez-Cohen, L. (2015). Efficient metabolic exchange and electron transfer within a syntrophic TCE degrading co-culture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. Applied and environmental microbiology, AEM-03464.
Martins, M., Faleiro, M. L., Barros, R. J., Veríssimo, A. R., Barreiros, M. A., & Costa, M. C. (2009). Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Journal of hazardous materials, 166(2-3), 706-713.
Mattes, T. E., Alexander, A. K., & Coleman, N. V. (2010). Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews, 34(4), 445-475.
Mattes, T. E., Jin, Y. O., Livermore, J., Pearl, M., & Liu, X. (2015). Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Applied microbiology and biotechnology, 99(21), 9267-9276.
Maymó-Gatell, X., Chien, Y. T., Gossett, J. M., & Zinder, S. H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318), 1568-1571.
Mazur, C.S., Jones, W.J. (2001). Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environmental science & technology, 35(24), 4783-4788.
Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., & Johnson, B. (2012). Sulfate reduction in groundwater: characterization and applications for remediation. Environmental geochemistry and health, 34(4), 539-550.
Miran, W., Nawaz, M., Jang, J., & Lee, D. S. (2017). Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. Water research, 117, 198-206.
Mirza, B. S., Sorensen, D. L., McGlinn, D. J., Dupont, R. R., & McLean, J. E. (2017). Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns. Applied microbiology and biotechnology, 101(11), 4799-4813.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y. & Noda, N. (2010). Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. using alternately binding probe competitive polymerase chain reaction. Molecular and cellular probes, 24(3), 131-137.
Morse, J. J., Alleman, B. C., Gossett, J. M., Zinder, S. H., Fennell, D. E., Sewell, G. W., & Vogel, C. M. (1998). A treatability test for evaluating the potential applicability of the reductive anaerobic biological in situ treatment technology (RABITT) to remediate chloroethenes. Draft Technical Protocol. Environmental Security Technology Certification Program. Arlington, VA: Environmental Security Technology Program.
Morse, J.W. and Cornwell, J.C. (1987). Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine. Chem, 22, 55–69.
Mos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and environmental microbiology, 72(4), 2765-2774.
Mundle, S.O., Johnson, T., Lacrampe-Couloume, G., Pérez-de-Mora, A., Duhamel, M., Edwards, E.A., Sherwood Lollar, B. (2012). Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA). Environmental science & technology, 46(3), 1731-1738.
Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441.
Nair, R. R., Silveira, C. M., Diniz, M. S., Almeida, M. G., Moura, J. J., & Rivas, M. G. (2015). Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess. JBIC Journal of Biological Inorganic Chemistry, 20(2), 311-322.
Nelson-Sathi, S., Sousa, F. L., Roettger, M., Lozada-Chávez, N., Thiergart, T., Janssen, A., ... & McInerney, J. O. (2015). Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature, 517(7532), 77.
Neuhauser, E.F., Ripp, J.A., Azzolina, N.A., Madsen, E.L., Mauro, D.M. and Taylor, T. (2009). Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: A 14-year field study. Ground Water Monit. Rem., 29, 66–76.
Newport, P. J., & Nedwell, D. B. (1988). The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. Journal of applied bacteriology, 65(5), 419-423.
O’Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C., (2013), “Nanoscale zero valent iron and bimetallic particles for contaminated site remediation”, Advances in Water Resources, 51, 104-122.
O’Carroll, R. E., Steele, R. J., Libby, G., Brownlee, L., & Chambers, J. A. (2013). Anticipated regret to increase uptake of colorectal cancer screening in Scotland (ARTICS): study protocol for a randomised controlled trial. BMC Public Health, 13(1), 849.
Odom, J. M. S., & Singleton, R. I. V. E. R. S. R.(1993) The Sulfate-Reducing Bacteria: Contemporary Perspectives.
Oldenhuis, R., Vink, R. L., Janssen, D. B., & Witholt, B. (1989). Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology, 55(11), 2819-2826.
Oliveira, T. F., Vonrhein, C., Matias, P. M., Venceslau, S. S., Pereira, I. A., & Archer, M. (2008). The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. Journal of Biological Chemistry, 283(49), 34141-34149.
Panagiotakis, I., Mamais, D., Pantazidou, M., Rossetti, S., Aulenta, F., & Tandoi, V. (2014). Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water, Air, & Soil Pollution, 225(1), 1785.
Pantazidou, M., Panagiotakis, I., Mamais, D., & Zikidi, V. (2012). Chloroethene biotransformation in the presence of different sulfate concentrations. Groundwater Monitoring & Remediation, 32(1), 106-119.
Park, J., Yamashita, N., Park, C., Shimono, T., Takeuchi, D. M., Tanaka, H. (2017). Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes. Chemosphere, 179, 347-358.
Parthasarathy, A., Stich, T. A., Lohner, S. T., Lesnefsky, A., Britt, R. D., & Spormann, A. M. (2015). Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. Journal of the American Chemical Society, 137(10), 3525-3532.
Patidar, S. K., & Tare, V. (2005). Effect of molybdate on methanogenic and sulfidogenic activity of biomass. Bioresource technology, 96(11), 1215-1222.
Paul, L., Jakobsen, R., Smolders, E., Albrechtsen, H. J., & Bjerg, P. L. (2016). Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides—observed dynamics in H2-dependent terminal electron accepting processes. Geomicrobiology Journal, 33(5), 357-366.
Paul, L., Jakobsen, R., Smolders, E., Albrechtsen, H.J., Bjerg, P.L. (2015). Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides–observed dynamics in H2-dependent terminal electron accepting processes. Geomicrobiology Journal, 00-00.
Peacock, A. D., Chang, Y. J., Istok, J. D., Krumholz, L., Geyer, R., Kinsall, B., ... & White, D. C. (2004). Utilization of microbial biofilms as monitors of bioremediation. Microbial Ecology, 47(3), 284-292.
Peng Jiang,Zhenmin Ma,and Ming Wen(2017) Genesis analysis of karst water trichloroethylene pollution in the east of a city, 3rd International Conference on Energy Materials and Environment Engineering IOP Publishing, IOP Conf. Series: Earth and Environmental Science 61
Pérez-de-Mora, A., Zila, A., McMaster, M. L., & Edwards, E. A. (2014). Bioremediation of chlorinated ethenes in fractured bedrock and associated changes in dechlorinating and nondechlorinating microbial populations. Environmental science & technology, 48(10), 5770-5779.
Philips, J., Maes, N., Springael, D., & Smolders, E. (2013), “Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells”, Journal of contaminant hydrology, 147, 25-33.
Pöritz, M., Schiffmann, C. L., Hause, G., Heinemann, U., Seifert, J., Jehmlich, N., ... & Lechner, U. (2015). Dehalococcoides mccartyi strain DCMB5 respires a broad spectrum of chlorinated aromatic compounds. Applied and environmental microbiology, 81(2), 587-596.
Powell, C. L., Goltz, M. N., & Agrawal, A. (2014). Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots. Journal of contaminant hydrology, 170, 68-75.
Predicala, B., Nemati, M., Stade, S., & Laguë, C. (2008). Control of H2S emission from swine manure using Na-nitrite and Na-molybdate. Journal of hazardous materials, 154(1-3), 300-309.
Qian, C., Johs, A., Chen, H., Mann, B. F., Lu, X., Abraham, P. E., ... & Gu, B. (2016). Global proteome response to deletion of genes related to mercury methylation and dissimilatory metal reduction reveals changes in respiratory metabolism in Geobacter sulfurreducens PCA. Journal of proteome research, 15(10), 3540-3549.
Qian, J., Liu, R., Wei, L., Lu, H., & Chen, G. H. (2015). System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage. Water research, 80, 189-199.
Qian, J., Zhu, X., Tao, Y., Zhou, Y., He, X., & Li, D. (2015). Promotion of Ni2+ Removal by masking toxicity to sulfate-reducing bacteria: addition of citrate. International journal of molecular sciences, 16(4), 7932-7943.
Ramel, F., Amrani, A., Pieulle, L., Lamrabet, O., Voordouw, G., Seddiki, N., ... & Brasseur, G. (2013). Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation. Microbiology, 159(12), 2663-2673.
Reiss, R. A., Guerra, P., & Makhnin, O. (2016). Metagenome phylogenetic profiling of microbial community evolution in a tetrachloroethene-contaminated aquifer responding to enhanced reductive dechlorination protocols. Standards in genomic sciences, 11(1), 88.
Rempel, C. L., Evitts, R. W., & Nemati, M. (2006). Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir. Journal of Industrial Microbiology and Biotechnology, 33(10), 878-886.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains.Applied and environmental microbiology,72(4), 2765-2774.
Römkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental pollution, 116(1), 109-121.
Rowe, A. R., Mansfeldt, C. B., Heavner, G. L., & Richardson, R. E. (2015). Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community. Applied microbiology and biotechnology, 99(5), 2313-2327.
Rusyn I, Chiu WA, Lash LH, Kromhout H, Hansen J, Guyton KZ.(2014)Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol Ther.,;141(1),p.55-68.
Saiyari, D. M., Chuang, H. P., Senoro, D. B., Lin, T. F., Whang, L. M., Chiu, Y. T., & Chen, Y. H. (2018). A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustainable Environment Research.
Sakamoto, S., & Kawase, Y. (2016). Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of environmental radioactivity, 165, 151-158.
Sani, R. K., Peyton, B. M., Amonette, J. E., & Geesey, G. G. (2004). Reduction of uranium (VI) under sulfate-reducing conditions in the presence of Fe (III)-(hydr) oxides1. Geochimica et Cosmochimica Acta, 68(12), 2639-2648.
Santos, A., & Rosas, J. M. (2016). In situ chemical oxidation (ISCO). Soil Remediation: Applications and New Technologies, 75.
Sanz, J. L., & Köchling, T. (2007). Molecular biology techniques used in wastewater treatment: an overview. Process biochemistry, 42(2), 119-133.
Sari, A., Tuzen, M., Kocal, İ. (2017). Application of chitosan‐modified pumice for antimony adsorption from aqueous solution. Environmental Progress & Sustainable Energy.
Scheutz, C., Durant, N. D., Dennis, P., Hansen, M. H., Jørgensen, T., Jakobsen, R., ... & Bjerg, P. L. (2008). Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environmental science & technology, 42(24), 9302-9309.
Schirmer, M., Dahmke, A., Dietrich, P., Dietze, M., Godeke, S., Richnow, H.H., Schirmer, K., Weiss, H. and Teutsch, G. (2006). Natural attenuation research at the contaminated megasite Zeitz. J. Hydrol., 328, 393–407
Sheu, Y. T., Tsang, D. C., Dong, C. D., Chen, C. W., Luo, S. G., & Kao, C. M. (2018). Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production, 178, 108-118.
Sheu, Y. T., Tsang, D. C., Dong, C. D., Chen, C. W., Luo, S. G., & Kao, C. M. (2018). Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production, 178, 108-118.
Siao, F. Y., Lu, J. F., Wang, J. S., Inbaraj, B. S., & Chen, B. H. (2009). In vitro binding of heavy metals by an edible biopolymer poly (γ-glutamic acid). Journal of agricultural and food chemistry, 57(2), 777-784.
Simon, J., & Kroneck, P. M. (2013). Microbial sulfite respiration. In Advances in microbial physiology (Vol. 62, pp. 45-117). Academic Press.
Singh, U., Praharaj, C. S., Singh, S. S., & Singh, N. P. (Eds.). (2016). Biofortification of food crops. New Delhi, India: Springer.
Smatlak, C.R., Gossett, J.M., Zinder, S.H. (1996). Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environmental Science & Technology, 30(9), 2850-2858.
Song, J., Chen, L., Chen, H., Sheng, F., Xing, D., Li, L., ... & Rittmann, B. (2018). Characterization and high-throughput sequencing of a trichlorophenol-dechlorinating microbial community acclimated from sewage sludge. Journal of Cleaner Production.
Stabnikov, V. P., Tay, S. L., Tay, D. K., & Ivanov, V. N. (2004). Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge. Applied Biochemistry and Microbiology, 40(4), 376-380.
Sung, Y., Ritalahti, K. M., Apkarian, R. P., & Löffler, F. E. (2006). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72(3), 1980-1987.
Sutherland, J., Adams, C. and Kekobad, J. (2004). Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: Technical and economic comparison for five groundwaters. Wat. Res., 38, 193–205.
Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). Remediation engineering: design concepts. CRC Press.
Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). Remediation engineering: design concepts. CRC Press.
Thornton, S. F., Morgan, P., Rolfe, S. A. (2017). Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. Hydrocarbon and Lipid Microbiology Protocols: Pollution Mitigation and Waste Treatment Applications, 11-64.
Tolvanen, K. E., Santala, V. P., & Karp, M. T. (2010). [FeFe]-hydrogenase gene quantification and melting curve analysis from hydrogen-fermenting bioreactor samples. international journal of hydrogen energy, 35(8), 3433-3439.
Torrado Rincón, J. R., Calixto Gómez, D. M., Sarmiento Caraballo, A. E., & Panqueva Álvarez, J. H. (2008). Evaluación del molibdato y nitrato sobre bacterias sulfato-reductoras asociadas a procesos de corrosión en sistemas industriales. Revista argentina de microbiología, 40(1), 52-62.
Tsitonaki, A., Petri, B., Crimi, M., Mosbæk, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science and Technology, 40(1), 55-91.
Uchino, Y., Miura, T., Hosoyama, A., Ohji, S., Yamazoe, A., Ito, M., ... & Fujita, N. (2015). Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Standards in genomic sciences, 10(1), 102.
Utgikar, V. P., Harmon, S. M., Chaudhary, N., Tabak, H. H., Govind, R., & Haines, J. R. (2002). Inhibition of sulfate‐reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environmental toxicology, 17(1), 40-48.
Vannelli, T. O. D. D., Logan, M. Y. K. E., Arciero, D. M., & Hooper, A. B. (1990). Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied and environmental microbiology, 56(4), 1169-1171.
Vogel, T. M., & McCARTY, P. L. (1985). Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49(5), 1080-1083.
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A., & Stahl, D. A. (1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. Journal of bacteriology, 180(11), 2975-2982.
Wang, S. Y., Chen, S. C., Lin, Y. C., Kuo, Y. C., Chen, J. Y., & Kao, C. M. (2016). Acidification and sulfide formation control during reductive dechlorination of 1, 2-dichloroethane in groundwater: Effectiveness and mechanistic study. Chemosphere, 160, 216-229.
Wang, W., Liu, X., Li, K., & Li, T. (2018). Dechlorinating performance of Dehalococcoides spp. mixed culture enhanced by tourmaline. Chemosphere, 194, 9-19.
Watts, R. J., Ahmad, M., Hohner, A. K., & Teel, A. L. (2018). Persulfate activation by glucose for in situ chemical oxidation. Water research, 133, 247-254.
Weatherill, J. J., Atashgahi, S., Schneidewind, U., Krause, S., Ullah, S., Cassidy, N., & Rivett, M. O. (2018). Natural attenuation of chlorinated ethenes in hyporheic zones: a review of key biogeochemical processes and in-situ transformation potential. Water research, 128, 362-382.
Wei, K., Grostern, A., Chan, W. W., Richardson, R. E., & Edwards, E. A. (2016). Electron Acceptor Interactions Between Organohalide-Respiring Bacteria: Cross-Feeding, Competition, and Inhibition. In Organohalide-Respiring Bacteria (pp. 283-308). Springer, Berlin, Heidelberg.
Wei, N., & Finneran, K. T. (2011). Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe (III) reduction does not always inhibit complete dechlorination. Environmental science & technology, 45(17), 7422-7430.
Wen, L. L., Zhang, Y., Chen, J. X., Zhang, Z. X., Yi, Y. Y., Tang, Y., ... & Zhao, H. P. (2017). The dechlorination of TCE by a perchlorate reducing consortium. Chemical Engineering Journal, 313, 1215-1221.
Wild, A., Hermann, R., & Leisinger, T. (1996). Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation, 7(6), 507-511.
Wong, Y. M., Wu, T. Y., Ling, T. C., Show, P. L., Lee, S. Y., Chang, J. S., ... & Juan, J. C. (2018). Evaluating new bio-hydrogen producers: Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade. TY. Journal of bioscience and bioengineering.
Wu, H., Meng, Q., & Yu, Z. (2016). Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures. Bioresource technology, 211, 603-609.
Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. (2010). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental science & technology, 44(19), 7647-7651.
Xu, Y., He, Y., Feng, X., Liang, L., Xu, J., Brookes, P. C., & Wu, J. (2014). Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe (III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Science of the Total Environment, 473, 215-223.
Xu, Y., He, Y., Zhang, Q., Xu, J., & Crowley, D. (2015). Coupling between pentachlorophenol dechlorination and soil redox as revealed by stable carbon isotope, microbial community structure, and biogeochemical data. Environmental science & technology, 49(9), 5425-5433.
Xu, Y., Xue, L., Ye, Q., Franks, A. E., Zhu, M., Feng, X., ... & He, Y. (2018). Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil. Frontiers in microbiology, 9, 567. a
Xue, L., Feng, X., Xu, Y., Li, X., Zhu, M., Xu, J., & He, Y. (2017). The dechlorination of pentachlorophenol under a sulfate and iron reduction co-occurring anaerobic environment. Chemosphere, 182, 166-173.
Yan, J., Şimşir, B., Farmer, A. T., Bi, M., Yang, Y., Campagna, S. R., & Löffler, F. E. (2016). The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. The ISME journal, 10(5), 1092-1101.
Yan, L., Ye, J., Zhang, P., Xu, D., Wu, Y., Liu, J., ... & Zeng, G. (2018). Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH. Bioresource technology, 259, 67-74.
Yang, Z. H., Dong, C. D., Chen, C. W., Sheu, Y. T., & Kao, C. M. (2018). Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 25(6), 5231-5242.
Yohda, M., Ikegami, K., Aita, Y., Kitajima, M., Takechi, A., Iwamoto, M., Fukuda, T., Temura, N., Shibasaki, J., Koike, S., Komatsu, D., Miyagi, S., Nishimura, M., Uchino, Y., Shiroma, A., Shimoji, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yagi, O. (2017). Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture. Scientific reports, 7(1), 2230.
Yoshida, H., Klinkhammer, K., Matsusaki, M., Möller, M., Klee, D., & Akashi, M. (2009). Disulfide‐crosslinked electrospun poly (γ‐glutamic acid) nonwovens as reduction‐responsive scaffolds. Macromolecular bioscience, 9(6), 568-574.
Yoshida, N., Yoshida, Y., Handa, Y., Kim, H. K., Ichihara, S., & Katayama, A. (2007). Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Science of the total environment, 381(1-3), 233-242.
Zahedi, S., Dahunsi, S. O., Perez, M., & Solera, R. (2018). Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste. Waste and Biomass Valorization, 1-9.
Zanaroli, G., Negroni, A., Häggblom, M. M., & Fava, F. (2015). Microbial dehalogenation of organohalides in marine and estuarine environments. Current opinion in biotechnology, 33, 287-295.
Zhang, L., Keller, J., & Yuan, Z. (2009). Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water research, 43(17), 4123-4132.
Zhang, S., Adrian, L., & Schüürmann, G. (2018). Interaction Mode and Regioselectivity in Vitamin B12-Dependent Dehalogenation of Aryl Halides by Dehalococcoides mccartyi Strain CBDB1. Environmental science & technology, 52(4), 1834-1843.
Zhang, S., Mao, G., Crittenden, J., Liu, X., & Du, H. (2017). Groundwater remediation from the past to the future: A bibliometric analysis. Water research, 119, 114-125.
Zhang, Y., & Tay, J. (2015). Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules. Journal of hazardous materials, 286, 204-210.
Zhao, H. P., Schmidt, K. R., Lohner, S., Tiehm, A. (2011). Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment culture. Water Science and Technology, 64(9), 1796-1803.
Zheng, M., Bao, J., Liao, P., Wang, K., Yuan, S., Tong, M., & Long, H. (2012). Electrogeneration of H2 for Pd-catalytic hydrodechlorination of 2, 4-dichlorophenol in groundwater. Chemosphere, 87(10), 1097-1104.
Zhou, C., Zhou, Y., & Rittmann, B. E. (2017). Reductive precipitation of sulfate and soluble Fe (III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization. Water research, 119, 91-101.
Zhou, Q., Chen, Y., Yang, M., Li, W., & Deng, L. (2013). Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper–iron bimetallic particles support. Bioresource technology, 136, 413-417.
Zhu, Y., Wu, M., Gao, N., Chu, W., An, N., Wang, Q., & Wang, S. (2018). Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate. Journal of hazardous materials, 341, 36-45.
行政院勞委會(2015),http://www.iosh.gov.tw/
行政院環保署(2018),毒災防救管理資訊系統-毒性化學物質資料,https://toxicdms.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS
高雄市環境保護局,(2018),土壤及地下水污染整治資訊網,http://ts01.gi-tech.com.tw/kssgi_public/Business_Introduction/P_Tech_Intro.aspx
張文, 張樹清, & 王學江. (2014). γ-聚谷氨酸的微生物合成及其在農業生產中的應用. 中國農學通报, 30(6), 40-45.
郭雅鈴 (2006). 應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所。
陳明銓. (2016). 以垂直流人工濕地處理含硫酸鹽及氨氮之廢水可行性研究. 中山大學海洋環境及工程學系研究所學位論文, 1-113.
陳智宏, & 劉秀美. (2008). 硫酸還原菌與鐵還原菌生理生化鑑定及其生物復育之應用研究,國立臺灣海洋大學海洋生物研究所。
楊佳紘, & 林志高. (2004). 生物沈澱程序中重金屬對硫酸還原效率的影響 (Doctoral dissertation).
經濟部工業局(2004),土壤與地下水污染整治技術手冊-生物處理技術。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.129.100
論文開放下載的時間是 校外不公開

Your IP address is 18.218.129.100
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code