Responsive image
博碩士論文 etd-0730107-003801 詳細資訊
Title page for etd-0730107-003801
論文名稱
Title
65 奈米金氧半場效電晶體受製程與機械應力下之電性分析
Electrical Analysis of 65nm MOSFETs under Process and Mechanical Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-20
繳交日期
Date of Submission
2007-07-30
關鍵字
Keywords
低溫、應變矽、機械應力
low temperature, strained silicon, mechanical bending
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
近年來,為了提昇金氧半場效電晶體工作頻率及性能,尺寸不斷微縮,讓相同面積晶片可以擁有更多的電晶體數量。但微影技術已經接近瓶頸,所以我們必須另外尋找能夠提升電晶體效能的方法,應變矽就是目前提升電晶體性能最熱門的方法。在此論文裡,我們探討當金氧半場效電晶體通道受到製程應力或外加機械應力產生應變矽後的電性變化。
為了讓通道產生應變,在製程上若在NMOS上沉積Si3N4或PMOS採用矽鍺磊晶於源/汲結構,通道受到單軸應力,大幅提升NMOS及PMOS電性;另外,我們設計出可使用外加機械應力來彎曲矽基板,讓NMOS受到單軸張應力及PMOS通道受到單軸壓應力,此方法亦成功提高NMOS及PMOS汲極電流與載子移動率,提升程度和製程應力相當,兩種方法,都能有效提升MOSFET電性;此外,本論文並探討應變矽在低溫時,不同散射機制對電性的影響。
Abstract
In recent years, in order to promote the MOSFET’s frequency and performance, the dimension keeping scale down, we can get more transistors in the same area. But nowadays the development of the lithography technology has come to the bottleneck, we must find the other way to improve the performance of transistor. In this study, the strained silicon effect and reliability of CMOS are fully discussed.
In order to get strain from the channel, by process, deposit Si3N4 at NMOS and adopt the silicon-germanium epitaxy on source/drain by PMOS, can effective improve NMOS and PMOS electronic characteristic. Besides, silicon substrate is bent by applying external mechanical stress, the lattice of channel will have strain due to uniaxial tensile stress by NMOS and strain due to uniaxial compressive stress by PMOS. By these ways, we successfully improve drain current and mobility of NMOS and PMOS.
Furthermore, this study is also probing into strain silicon at low temperature, the impacts on electronic characteristic by different scattering mechanism.
目次 Table of Contents
目錄.....................................................Ⅰ
表目錄.................................................Ⅳ
圖目錄.................................................Ⅴ
中文摘要............................................ VIII
英文摘要............................................. IX

第一章 緒論
1-1.電晶體發展簡介...............................1
1-2.研究動機...........................................2
1-3.文獻回顧...........................................3
1-4.本文結構...........................................6
第二章 理論基礎
2-1.應變矽的分類 ...................................7
2-1-1. 製程單軸伸張/壓縮應力..............7
2-1-2. 製程雙軸伸張/壓縮應力..............7
2-2. 應變矽電子特性...............................9
2-3.低溫電子特性...................................11
2-4金氧半場效電晶體原理....................12
第三章 實驗儀器與參數粹取
3-1. 實驗步驟........................................13
3-1-1. 實驗前準備.............................13
3-1-2. Sample研磨...........................13
3-1-3. 量測設定.................................14
3-2. 參數萃取........................................16
3-3. 實驗儀器........................................18
3-3-1. 研磨機台..................................18
3-3-2. 量測機台..................................18
第四章 結果與討論
4-1. 製程應力對電性的影響..................19
4-1-1. 氮化矽應力層對NMOS電性的影響.................19
4-1-2. 矽鍺源極/汲極結構對PMOS電性的影響............20
4-2. 機械研磨的影響................................21
4-3. 彎曲對電性的影響..........................22
4-3.1 室溫機械彎曲.................................22
4-3.2 NMOS機械彎曲..............................23
4-3.2 PMOS機械彎曲...............................23

4-4.低溫低溫機械彎曲.............................25
4-4-1 低溫壓縮彎曲.................................25
4-4-2 低溫伸張彎曲..................................26
第五章 結論與未來展望
結論與未來展望.........................................28

參考文獻.....................................................29

表目錄
表2-1 NMOS與PMOS通道受到不同應力對驅動電流的影響........37
表4-1 有無氮化矽應力對NMOS(W=1μm、L=1um)參數比較表....37
表4-2 有無氮化矽應力對NMOS(W=1μm、L=70nm)參數比較表....37
表4-3 有無矽鍺源汲極應力對PMOS(W=1μm、L=1um)參數比較表38
表4-4 有無矽鍺源汲極應力PMOS(W=1μm、L=70nm)參數比較表..38
表4-5 外加機械應力對NMOS(W=1μm、L=1um)之參數比較表. ...39
表4-6 外加機械應力對PMOS(W=1μm、L=1um)之參數比較表.... 39

圖目錄
圖1-1 Intel摩爾定律.....................................40
圖2-1 NMOS單軸伸張與PMOS單軸壓縮結構示意圖...............41
圖2-2 NMOS單軸伸張與PMOS單軸壓縮通道TEM示意圖.........41
圖2-3 雙軸伸張壓縮結構示意圖.............................42
圖2-4 (001)面上二重與四重簡併態的電子特性..............42
圖2-5 PMOS受應力價電帶E-K圖............................43
圖2-6 MOSFET透試圖......................................43
圖3-1研磨機.............................................44
圖3-2量測平台...........................................44
圖3-3量測機台...........................................45
圖3-4. 低溫平台..........................................45
圖4-1圖4-1 (a)標準電晶體與(b)源極/汲極端加上矽鍺磊晶電晶體示意圖.............................................46
圖4-2 有無氮化矽應力層NMOS(W=1μm、L=1μm)VG-NID曲線... 46
圖4-3 有無氮化矽應力層NMOS(W=1μm、L=70nm)VG-NID曲線... 47
圖4-4有無氮化矽應力層對NMOS(W=1μm、L=1μm)VG-gm曲線.. 47
圖4-5有無氮化矽應力層對NMOS(W=1μm、L=70nm)VG-gm曲線.. 48
圖4-6 矽鍺源/汲極電晶體製造方法簡單示意圖................48
圖4-7 有無矽鍺源汲極應力PMOS(W=1μm、L=1μm)VG-NID曲線.49
圖4-8 有無矽鍺源汲極應力PMOS(W=1μm、L=70nm)VG-NID曲線.49
圖4-9 有無矽鍺源汲極應力PMOS(W=1μm、L=1μm)VG-gm曲線....50
圖4-10 有無矽鍺源汲極應力PMOS(W=1μm、L=70nm)VG-gm曲線.50
圖4-11 NMOS 研磨前後之比較(W=10μm、L=70nm)..............51
圖4-12 PMOS 研磨前後之比較(W=10μm、L=70nm)..............51
圖4-13 伸張應力之模具....................................52
圖4-14 壓縮應力之模具....................................52
圖4-15不同彎曲曲率NMOS載子移動率(W=1μm、L=1μm)........53
圖4-16不同彎曲曲率PMOS載子移動率(W=1μm、L=1μm).......53
圖4-17伸張彎曲對NMOS VG-NID 曲線(W=1μm、L=1μm )........54
圖4-18壓縮彎曲對PMOS VG-NID 曲線(W=1μm、L=1μm ).........54
圖4-19壓縮彎曲對矽鍺源汲極PMOS VG-NID 曲線(W=1μm、L=1μm)55
圖4-20 低溫實驗流程圖....................................56
圖4-21 溫度對雜質與晶格散射影響..........................56
圖4-22 標準PMOS壓縮彎曲在低溫與室溫VG-NID 曲線...........57
圖4-23 SiGe S/D結構PMOS壓縮彎曲在低溫與室溫VG-NID 曲線....57
圖4-24 標準PMOS壓縮彎曲在不同溫度載子遷移率.............58
圖4-25 SiGe S/D結構PMOS壓縮彎曲在不同溫度載子遷移率..... 58
圖4-26 標準PMOS壓縮彎曲在不同溫度ION電流................59
圖4-27 SiGe S/D結構PMOS壓縮彎曲在不同溫度ION電流........59
圖4-28 標準PMOS伸張彎曲在低溫與室溫VG-NID 曲線...........60
圖4-29 SiGe S/D結構PMOS伸張彎曲在低溫與室溫VG-NID 曲線....60
圖4-30 標準PMOS伸張彎曲在不同溫度載子遷移率.............61
圖4-31 SiGe S/D結構PMOS伸張彎曲在不同溫度載子遷移率......61
圖4-32標準PMOS伸張彎曲在不同溫度ION電流........ .........62
圖4-33 SiGe S/D結構PMOS伸張彎曲在不同溫度ION電流........62
參考文獻 References
參考文獻

[1] Chee Wee, Maikop, S. Yu,C.-Y. “Mobility-enhancement technologies”, IEEE Electron Device Lett., vol.21, pp.21-26, May-June.2005.

[2]. J.L. Hoyt et al., “Strained silicon MOSFET technology”, IEEE Electron Device Lett., pp.23-26, Aug.2002.

[3] J.R. Shih et al., “The Study of Compressive and Tensile Stress on MOSFET’s I-V, C-V Characteristics and It’s Impacts on Hot Carrier Injection and Negative Bias Temperature Instability”, IEEE Electron Device Lett., pp.612-613, April 2003.

[4] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons,
”Comparative study, of phononlimited mobility of two-
dimensional electrons in strained and unstrained-Si metal-
oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.

[5] E. A. Fitzgerald, “Dislocations in strained-layer
epitaxy : Theory, experiments, and applications”, Mater. Sci. Rep., vol.7, pp.88-142, 1991.

[6] E. A. Fitzgerald, Y. H. Xie, D. Monroe, G. P. Watson, J. M. Kuo, and P. J. Silverman, “Defect control in relaxed, graded GeSi/Si”, Mater. Sci. Forum, vol.143-147, pp.471-481, 1994.

[7] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.

[8] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhance-
ment in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.

[9] K. Rim et al., “Strained-Si NMOSFETs for high-performance
CMOS technology”, in Symp. VLSI Tech. Dig., pp.59-60, 2001.

[10] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.

[11] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.

[12] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs”, in IEDM Tech. Dig., pp.517-520, 1995.

[13] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.

[14] S.E Thompson et al., “A 90-nm Logic Technology Featuring Strained-Silicon”, vol.51 Issue. 11 , pp.1790-1797, 2004.

[15] M. L. Lee, C. W. Leitz, C. Zhiyuan, A. J. Pitera, G. Taraschi, D. A. Antoniadis, and E. A. Fitzgerald, “Strained Ge channel p-type MOSFETs fabricated on Si1-xGex/Si virtual substrate. Materials issues in novel Si-base technology”, in Proc. MRS Symp., vol.686, pp.39-43, 2002.

[16] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.

[17] A. Shimizuet al., “Local mechanical-stress control(LMC)
: A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001

[18] A. Steegen et al., “Silicide induced pattern design and orientation dependent transconductance in MOS transistors”, in IEDM tech. Dig., pp.497-500, 1999.

[19] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech. Dig., pp.54-55, 2004.

[20] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.

[21] B. Kloeck and N. F. de Rooij, “Mechanical Sensors”, in Semiconductor Sensors, S. M. Sze,Ed. New York:Wiley, 1994.

[22] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.

[23] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.

[24] Y. G. Wang, D. B. Scott, J. Wu, J. L. Waller, J. Hu, K. Liu, and V. Ukraintsev, “Effect of uniaxial mechanical stress on drive current of 0.13μm MOSFETs”, in IEEE Transactions on Electron Device, vol.50, pp.529-531, Feb.2003.

[25] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.

[26] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.

[27] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.

[28] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.

[29] Takagi S, Koga J, Toriumi A. Tech Dig IEDM 1997:219.

[30] Takagi S, Hoyt JL, Welser JJ, Gibbons JF. J Appl Phys 1996;80:1567.

[31] Nakatsuji H, Kamakura Y, Taniguchi K. IEDM Tech Dig 2002:727.

[32] Fischetti MV, Ren Z, Solomon PM, Yang M, Rim K. J Appl Phys 2003;94:1079.

[33] E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiOX:” Appl. Pkys. Lett., vol. 15, no. 6, p. 174, 1969.

[34] E. H. Nicollian and C. N. Berglund, “Avalanche injection of electrons into insulating Si02 using MOS structures,”J. Appl. Phys., vol. 41, no. 7, p. 3052, 1970

[35] G. Hu and W. C. Johnson, “Relationship between trapped holes and interface states in MOS capacitors,” Appl. Phys. Lett., vol. 36, no. 7, p. 590, 1980.

[36] M. Shatzkes and M. Av-Ron, “Impact ionization and positive charge in thin Si02 films,” J. Appl. Phys., vol. 47, no. 7, p. 3 192,1976.

[37] D. J. DiMaria, Z. A. Weinberg, and J. M. Aitken, “Location of positive charges in Si02 films on Si generated by vuv photons, X-rays, and high-field stressing,” J. Appl. Phys., vol. 48, no, 3, p. 898, 1977.

[38] R. J. Powell, “Hole photocurrents and electron tunnel injection induced by trapped holes in Si02 films,” J. Appl. Phys., vol. 46, no. 10, p. 4557, 1975.

[39] T. H. Ning and H. N. Yu, “Optically induced injection of hot electrons into Si02,” J. Appl. Phys., vol. 45, no. 12, p. 5373, 1974.

[40] M. H. Woods and R. Williams, “Hole traps in silicon dioxide,” J. Appl. Phys., vol. 47, no. 3, p. 1082, 1976.

[41] D. R. Young, E. A. Irene, D. J. DiMaria and R. F. DeKeersmaecer, “Electron Trapping in SiO2 at 295 and 77°K,” J. Appl. Phy,;., vol. 50, no. 10, p. 6366, 1979.

[42] J. F. Verwey, “Hole currents in thermally grown SiO2,” J. Appl. Phys., vol. 43, no. 5, p. 2273, 1972.

[43] J. F. Verwey, “Nonavalanche injection of hot carriers into SiO2 ,” J. Appl. Phys.,vol.44, no.6, p. 2681, 1973.

[44] KWOK K.NG and GEOFFREY W. TAYLOR “Effects of Hot-Carrier Trapping in n- and p-Channel MOSFET’s” IEEE TRANSACTIONS ON ECLECTRON DEVICES, VOL.ED-30, NO.8, AUGUST 1983

[45] J. E. Lilienield, U.S. Patent 1,745,175, 1930.

[46] O. Heil, British Patent 439,457, 1935.

[47] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.

[48] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induce surface devices”, IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa.,1960. D. Kahng, “A historical perspective on the development of MOS transistors and related device”, IEEE Tran. Electron Device, ED-23, 655, 1976.

[49] H. K. J. Ihantola, “Design Theory of a surface field-effect transistor”, Stanford Electron. Lab. Tech. Rep. NO. 1661-1, 1961.

[50] H. K. J. Ihantola and J. L. Moll, “Design Theory of a surface field-effect transistor”, Solid State Electron., 7, 426, 1964.

[51] F.Clark William, El-Kareh badih, “Low temperature CMOS – A Brief Review”, IEEE Electron Device, VOL.15, NO.3, JUNE 1992.

[52] Edmundo A. Gutierrez-D, M.Jamal Deen, C.Claeys “Low Temperature Electronics: Physics, Devices, Circuits, and Applications”, Academic Press, 2000.

[53] 施敏原著,黃調元譯, ”半導體元件物理與製作技術第二版”,國立交通大學出版社,民國九十二年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.131.110.169
論文開放下載的時間是 校外不公開

Your IP address is 3.131.110.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code