Responsive image
博碩士論文 etd-0730107-152432 詳細資訊
Title page for etd-0730107-152432
論文名稱
Title
以原子層沉積法備製二氧化鈦薄膜之特性分析
Characterization of Titanium Oxide Films Prepared by Atomic Layer Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-06
繳交日期
Date of Submission
2007-07-30
關鍵字
Keywords
原子層沉積法、有機金屬化學氣相沉積法、二氧化鈦
TiO2, ALD, MOCVD
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
探討以原子層沈積法成長二氧化鈦薄膜於矽基板上的物理和化學特性,且利用金氧半結構來分析電特性。此外,利用氮氣和氧氣進行熱退火處理以改善薄膜特性。另一方面,利用以液相沈積法成長二氧化矽薄膜時所產生的氟離子來鈍化二氧化鈦薄膜以進一步的改善漏電流
Abstract
In this study, the characteristics of atomic layer deposited TiO2 films on silicon substrate were investigated. The physical and chemical properties were measured and surveyed. And an Al/ALD-TiO2/Si MOS structure was used for the electrical characterizations. For the electrical property improvements, we investigated the atomic layer deposited TiO2 films by the post-anneal treatments in nitrogen and oxygen ambient. Furthermore, the TiO2 films were passivated by fluorine ions to decrease the leakage current density that came from the liquid phase deposited SiO2 stacks.
After the post-annealing and fluorine ions passivation treatments, the dielectric constant of atomic layer deposited TiO2 film was maintained and the leakage current density was improved.
目次 Table of Contents
Chapter 1 1
Introduction 1
1.1 Developments in gate dielectric 1
1.2 Properties of TiO2 2
1.3 Comparison of deposition methods of TiO2 4
1.4 Advantages of MOCVD 4
1.5 Advantages of ALD 5
1.6 Motivation of Fluorine passivated ALD-TiO2/Si MOS structure 6
References 13
Chapter 2 23
Experiments 23
2.1 CVD theorem 23
2.2 Deposition system of MOCVD 24
2.3 Properties of source materials 25
2.4 Deposition system of ALD 26
2.5 Silicon oxide prepared by LPD 26
2.5.1 Deposition system 26
2.5.2 Mechanisms of LPD-SiO2 27
2.5.3 Preparations of deposition solutions 27
2.6 Deposition procedures 28
2.6.1 Si wafer cleaning procedures 28
2.6.2 Aluminum metal cleaning processes 29
2.6.3 Preparations of MOCVD-TiO2 films 29
2.6.4 Growth Parameters of ALD-TiO2 films 30
2.6.5 Preparations of LPD-SiO2 films 30
2.6.6 Fabrication of Metal-Oxide-Semiconductor Structure 31
2.7 Characterization 31
2.7.1 Physical properties 31
2.7.2 Chemical properties 32
2.7.3 Electrical properties 32
References 50
Chapter 3 51
Results and Discussion 51
3.1 Deposition rate of TiO2 films as a function of deposition temperature 51
3.2 XRD patterns of TiO2 films as a function of deposition temperature 52
3.3 SEM morphologies of TiO2 films as a function of deposition temperature 53
3.4 AFM surface roughness of TiO2 films as a function of deposition temperature 53
3.5 ESCA analyses of TiO2 films as a function of deposition temperatur 54
3.6 Electrical properties of MOCVD-TiO2 films on deposition temperature 55
3.6.1 Leakage current density of MOCVD-TiO2 films as a function od deposition temperature 55
3.6.2 C-V characteristics and dielectric constant of deposition temperature 56
3.6.3 Improvement in electrical properties of as-deposited MOCVD-TiO2 films by annealing treatment 57
3.7 Electrical properties of ALD-TiO2 films on deposition temperature 59
3.7.1 Leakage current density of ALD-TiO2 films as a function of deposition temperature 59
3.7.2 C-V characteristics and dielectric constant of ALD-TiO2 films as a function of deposition temperature 60
3.7.3 Electric Characteristics of ALD-TiO2 Films prepared at different annealing temperature in O2 ambient 61
3.7.4 Improvement in electrical properties of ALD-TiO2 films by annealing treatment 62
3.8 Fluorine passivation of ALD-TiO2/Si MOS structure 63
3.8.1 The leakage current density of LPD-SiO2/ALD-TiO2/Si after LPD-SiO2 removal with varied N2 annealing temperature 64
3.8.2 Mechanisms of leakage current 66
3.8.2.1 Frenkel-Poole plots for as-grown ALD-TiO2 films 66
3.8.2.2 Space-charge limited plots for O2-ammealed ALD-TiO2 films 66
3.8.2.3 Schottky emission plots of LPD-SiO2/O2-annealed ALD-TiO2/Si after LPD-SiO2 removal MOS structure with varied N2 annealing temperature 67
3.8.3 The C-V characteristics of LPD-SiO2/ALD-TiO2/Si after LPD-SiO2 removal with varied N2 annealing temperature 68
References 99
CHAPTER 4 100
Conclusions 100
參考文獻 References
[1] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res.,vol. 16, pp. 1838-1849, 2001.
[2] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[3] G. V. Samsonov, The Oxide Handbook. New York: IFI/Plenum, p.316, 1973.
[4] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,”J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[5] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp. 1-19, 1980.
[6] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90, pp. 5896-5900, 1986.
[7] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-films with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[8] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp.3264-3266, 1998.
[9] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[10] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent,” Chem. Commun., pp. 569-570, 2001.
[11] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides,” Thin Solid Films, vol. 323, pp. 59-62,1998.
[12] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[13] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite,”Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[14] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,”Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[15] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles,mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[16] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[17] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[18] G. S. Brady, and H. R. Clauser, Materials Handbook, 13th ed. New York: McGraw-Hill, 1991.
[19] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol.
428, pp. 25-32, 1997.
[20] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
[21] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[22] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[23] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391,1965.
[24] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,”Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[25] O. Harizanov, and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[26] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[27] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,”Thin Solid Films, vol. 391, pp. 133-137, 2001.
[28] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri,“TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[29] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[30] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp. 218-224, 2000.
[31] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[32] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[33] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[34] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor eposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[35] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[36] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol.,vol. 126, pp. 123-130, 2000.
[37] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[38] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,” Thin Solid Films, vol. 401, pp. 88-93, 2001.
[39] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[40] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[41] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[42] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[43] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[44] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,”Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[45] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol.371, pp. 148-152, 2000.
[46] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot,and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[47] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[48] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[49] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond. Sci. Technol., vol. 20, pp. 519-523, 2005.
[50] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp. 766-771, 2000.
[51] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[52] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate,” Appl. Phys. Lett., vol. 66, pp. 815-821, 1995.
[53] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films,” Thin Solid Films, vol. 198, pp. 199-205, 1991.
[54] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates,”Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[55] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[56] G. Stringfellow, Theory and Practice, Academic Press, Boston, 1989.
[57] T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
[58] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[59] M. Leskela¨, M. Ritala , Thin Solid Films 409 (2002) 138
[60] M. Ritala, M. Leskela¨, J.-P. Dekker, C. Mutsaers, P.J. Soininen,J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[61] M. Ritala, K. Kukli, A. Rahtu, et al., Science 288 (2000) 319.
[62] H. N. Chen, C. L. Lee and T. F. Lei, “The effects of fluorine passivation on polysilicon thin-filmtransistors,” IEEE Trans. Electron Device, vol. ED-41 pp. 698-702, 1994.
[63] J. W. Park, B. T. Ahn and K. Lee, “Effects of F+ Implantation on the Characteristics of Poly-Si Films and Low-Temperature n-ch Poly-Si Thin-Film Transistors, ” Jpn. J. Appl. Phys. vol. 34, pp. 1436-1441, 1995.
[64] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., p. 512, 2000.
[65] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[66] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[67] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013, 1989.
[68] L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., vol. 5, pp. 285-299, 1962.
[69] D. K. Schroder, Semiconductor Material and Device Characterization, pp. 378, New York: Wiley, 1998.
[70] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Ch. 8, 9, New York: Wiley, 2003.
[71] C. T. Sah, A. B. Tole and R. F. Pierret, “Error analysis of surface state density determination using the MOS capacitance method,” Solid-State Electron., vol. 12, pp. 689-709, Sep. 1969.
[72] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[73] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595–600, 2001.
[74] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, pp. 735-758, 1995.
[75]“Powder Diffraction File,” Joint committee on powder diffraction standards.
[76] Y. S. Kim, M. Y. sung, Y. H. Lee, B. K. Ju, and M. h. Oh, “The Influence of Surface Roughness on the Rlrctric Conduction Process in Amorphous Ta2O5 Thin Films,” J. Electrochemical Soc., vol. 146(9), pp. 3398-3402, 1999.
[77] F. Zhang, S. Jim, Y. Mao, Z. Zheng, Y. Chen, X. Liu, “Surface characterization of titanium oxide films synthesized by ion beam enhanced deposition, ”Thin Solid Films, vol. 310, pp. 29-33. 1997.
[78] S. F. Chen, C. W. Wang, “Effect of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO2 thin films,” J. Vac. Sci. Technol. B, vol. 20(1), pp. 263-270, 2002
[79] Jeshik Shin, Sanghun Jeon, and Hyunsang Hwang, “Electrical Characteristics of High-K Metal Oxide/SiO2 Stack Gate Dielectric prepared by Reaction of Metal with SiO2,” J. Electronanalytical Chemistry, vol. 147(1), pp.F1-F3, 2000
[80]Masaru Kadoshima,*, Masahiko Hiratani, Yasuhiro Shimamoto, Kazuyoshi Torii, Hiroshi Miki, Shinichiro Kimura, Toshihide Nabatame, Thin Solid Films 424 (2003) 224–228
[81] S. M. Sze, Physics of Semiconductor Devices second edition, Chap. 7, Wiley, New York, 1981.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.187.103
論文開放下載的時間是 校外不公開

Your IP address is 3.144.187.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code