Responsive image
博碩士論文 etd-0730107-210305 詳細資訊
Title page for etd-0730107-210305
論文名稱
Title
利用電子束微影術於光子晶體與邊射型雷射之研製
Applications of E-Beam Lithography to the Fabrication of Photonic Crystal Microcavity and DBR Laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-26
繳交日期
Date of Submission
2007-07-30
關鍵字
Keywords
光子晶體、電子束微影
Photonic Crystal, E-Beam Lithography
統計
Statistics
本論文已被瀏覽 5767 次,被下載 0
The thesis/dissertation has been browsed 5767 times, has been downloaded 0 times.
中文摘要
本論文主旨在利用電子束微影術,完成邊射型雷射、二維光子晶體微共振腔以及用來量測量子點之金屬奈米電極之研製。我們以新架設之電子束微影術之系統,成功定義出各種陣列圖案,測試出其最小可寫線寬約40-50奈米,最大可寫範圍為250μm × 250μm。並於分子束磊晶成長的InGaAs/InAlGaAs InP磊晶片上,利用電子束微影術製作邊射型雷射與二維光子晶體微共振腔。
在邊射型雷射 (DBR Laser) 方面,我們設計MMI 共振腔的長度為90μm以滿足磊晶片的發光波長以及模態,並在MMI 旁設計一組左右不對稱的DBR反射鏡,加上適當的反射鏡厚度 Ds為361nm及空氣間距 Da 為 388nm ,配合金屬掀離及乾蝕刻技術,並蒸鍍上電極完成元件的製作,由I-V量測得知元件的阻值約為16歐姆。
在二維光子晶體微共振腔方面,我們設計TE極化不存在的光子能隙,結構為三角晶格方式排列之空氣圓柱。圓柱半徑r為456nm,晶格常數 A為1137nm,其能帶範圍為1517.0 – 1617.8 nm。並在此光子晶體中製作一點缺陷形成單點缺陷之微共振腔,其缺陷態介於1546.32nm~1547.74nm。製程上,以電子束微影定義出我們設計的圖形後,利用金屬掀離做出蝕刻遮罩,配合乾蝕刻技術將圖形轉移至底下的介電質層及磊晶層,完成二維光子晶體。由微光激螢光的量測中,可看到在1547nm (a/λ=0.74)的defect mode、1351 nm (a/λ= 0.85)的surface state與1480nm (a/λ= 0.78)的standing wave。其中Defect mode的Q值最大,約為400。
Abstract
In this thesis, we use E-Beam lithography to finish the process of DBR laser, 2D Photonic crystal, and Metallic nanoelectrodes. We use the new E-Beam system to define array patterns. By this test, we obtain the minimum linewidth of 50nm, and the maximum working range is 250μm*250μm.
We fabricated the 2D photonic crystal microcavity and DBR laser on the InGaAs/InAlGaAs which was grown by molecular beam epitaxy (MBE) on InP substrate.
For the DBR laser, the length of Multi-mode Interference (MMI) was 90μm to satisfied the emission wavelength and optical modes. We apply a coupled DBR reflector on both sides of MMI. The mirror width was 361nm and the air gap was 388nm.
For the 2D photonic crystal (2D PhC) microcavity, a triangular array of air columns was adopted. The lattice constant and air columns radius are 1137nm and 456nm, respectively. The TE-mode photonic band gap of this structure is corresponding to wavelength range in 1517.01 nm~1617.81 nm. We leave a single defect in the 2D PhC to form 2D PhC microcavity and the corresponding defect modes are 1546.32nm and 1547.74nm. The Micro-PL measurement shows that a defect mode at 1547nm (a/λ=0.74), a surface state at 1351nm (a/λ=0.85), and a standing wave at 1480nm (a/λ=0.78). The maximum Q value is about 400 for the defect mode.
目次 Table of Contents
第一章 緒論
1-1 電子束微影簡介...................................................................1
1-2 光子晶體簡介...................................................................... 2
1-3 一維光子晶體...................................................................... 6
1-4 二維光子晶體...................................................................... 6
1-5 論文架構.............................................................................. 6

第二章 DBR雷射元件設計與模擬
2-1 磊晶片結構.........................................................................7
2-2 DBR雷射 元件模擬......................................................... 9
2-3 DBR雷射元件設計......................................................... 13

第三章 二維光子晶體元件設計與模擬
3-1 二維光子晶體元件模擬.................................................. 14
3-2 二維光子晶體元件設計.................................................. 24

第四章 DBR雷射元件製程
4-1 儀器架構.......................................................................... 25
4-2 DBR雷射製程................................................................. 26
4-3 製程步驟與實驗結果...................................................... 27
第五章 二維光子晶體元件製程
5-1 二維光子晶體製程.......................................................... 37
5-2 製程步驟與實驗結果...................................................... 38

第六章 量測結果................................................................................. 46

第七章 結論......................................................................................... 53

參考文獻................................................................................................. 55

附錄A.金屬奈米電極之研製................................................................ 57

附錄B.電子束微影的各項可調整參數................................................ 60

附錄C.電子束微影的最小可寫線寬.................................................... 62

附錄D.二次電子束微影技術................................................................ 64

附錄E.實驗中所使用的儀器與藥品一覽表......................................... 66








圖目錄
第一章 緒論

圖1-1 電子束微影系統裝置圖................................................1
圖1-2 一維、二維與三維光子晶體示意圖........................... 3
圖1-2 光子晶體能帶圖........................................................... 4
圖1-3 (a)具有線缺陷的二維光子晶體
(b)具有點缺陷的二維光子晶體................................. 5

第二章DBR雷射元件設計與模擬

圖2-1 C266 PL光譜圖............................................................ 7
圖2-2 DBR邊射型雷射模擬結構示意圖.............................. 9
圖2-3 反射率跟DBR反射鏡數量及空氣間隔寬度關係圖.. 10
圖2-4 MMI中光場強度分佈圖............................................. 11
圖2-5 MMI長度為 時..................................................... 12
圖2-6 MMI長度小於 時................................................. 12
圖2-7 DBR雷射設計圖......................................................... 13

第三章 二維光子晶體 元件設計與模擬

圖3-1 (a) 四角晶格(b)三角晶格(c)蜂巢晶格.......................... 14

圖3-2 TLAC結構示意圖......................................................... 15

圖3-3 TLAC結構之unit cell................................................... 16

圖3-4 六角晶格排列光子晶體第一布里淵區........................ 16

圖3-5 TLAC結構R/A比與光子能隙關係圖......................... 17

圖3-6 TLAC結構材料空氣折射率之差與光子能隙關係圖.. 17

圖3-7 以C266為基板之R/A比與光子能隙之關係............. 18

圖3-8 完美TLAC模擬結構示意圖........................................ 19

圖3-9 完整TLAC結構TE及TM光子能帶圖..................... 19

圖3-10完整TLAC結構TE光子能帶圖................................ 20

圖3-11完整TLAC結構TE光子能帶放大圖........................ 20

圖3-12 含有單一點缺陷之TLAC模擬結構圖...................... 21

圖3-13 使用supercell而縮小的第一布里淵區...................... 22

圖3-14 模擬含單一點缺陷TLAC結構所使用之supercell…23

圖3-15 含單一點缺陷TLAC結構之TE光子能帶圖........... 23

圖3-16 二維光子晶體微共振腔設計圖.................................. 24

第四章 DBR雷射元件製程

圖4-1 儀器裝置圖.................................................................... 25

圖4-2 製程示意圖.................................................................... 26

圖4-3塗佈光阻後的磊晶片..................................................... 27

圖4-4 顯影後的OM圖............................................................. 28

圖4-5 經lift-off後之DBR雷射上視圖.................................. 29

圖4-6 經lift-off後之DBR反射鏡.......................................... 30

圖4-7 經RIE蝕刻後的反射鏡 (左方兩組)............................ 31

圖4-8 經RIE蝕刻後的反射鏡 (右方三組)............................ 31

圖4-9 經乾蝕刻後的DBR反射鏡側視圖.............................. 32

圖4-10 經乾蝕刻後的DBR共振腔之側壁( sidewall ).......... 33

圖4-11 經ICP-RIE蝕刻後的單模波導................................... 33

圖4-12 ICP蝕刻後的DBR雷射全圖...................................... 34

圖4-13 HF移除介電質膜後的圖形......................................... 34

圖4-14 Spin PMGI 轉速與厚度關係表................................... 35

圖4-15 DBR雷射元件之I-V Curve......................................... 36



第五章 二維光子晶體 元件製程

圖5-1 製程示意圖.................................................................... 37

圖5-2塗佈光阻後的磊晶片..................................................... 38

圖5-3電子束曝光並顯影後的OM/SEM圖............................. 39

圖5-4鍍上Cr 尚未Lift-Off的SEM圖.................................... 40

圖5-5經ACE lift-off後之光子晶體.......................................... 40

圖5-6經RIE Dry Etching後之光子晶體................................... 41

圖5-7經ICP Deep Etching後之光子晶體................................. 42

圖5-8 ICP對磊晶片之蝕刻率..................................................... 43

圖5-9經HF Lift-Off後之光子晶體........................................... 44

圖5-10完成之光子晶體微共振腔側視圖.................................. 44

圖5-11 完成之光子晶體微共振腔放大圖................................. 45

圖5-12完成之光子晶體微共振腔上視圖.................................. 45



第六章 量測結果

圖6-1 量測之儀器架構............................................................. 46

圖6-2 量測試片之CCD圖形................................................... 46

圖6-3 量側樣品之Background Data........................................ 47

圖6-4 532雷射所產生的3倍頻訊號...................................... 47

圖6-5 蝕刻150秒的波長/功率光譜圖.................................... 48

圖6-6 蝕刻150秒的能量/功率光譜圖.................................... 48

圖6-7 蝕刻120秒的波長/功率光譜圖.................................... 49

圖6-8 蝕刻120秒的能量/功率光譜圖.................................... 49

圖6-9 蝕刻90秒的波長/功率光譜圖...................................... 50

圖6-10 蝕刻90秒的能量/功率光譜圖.................................... 50

圖6-11 光子晶體微共振腔的二維能帶模擬及其放大............ 52
圖6-12 光子晶體微共振腔的三維能帶模擬及其放大.............. 53

表目錄

第二章 元件設計與模擬
表2-1 C266 磊晶結構表............................................................ 8

第六章 量測結果
表6-1 不同ICP條件的峰值、半高寬與Q值整理................ 51
參考文獻 References
[1]E.Yablonovitch,”Inhibited Spontaneous Emission in Solid-State
Physical and Electronics”, Phys. Rev. Lett., Vol. 58, pp.2059-2062
(1987).
[2]S.John,”Strong localization of photons in certain disordered dielectric
superlattices” , Phys. Rev. Lett., Vol. 58, pp.2486-2489 (1987).
[3]Bong-Shik Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q
photonic double-heterostructure nanocavity” Nature material, Vol. 4,
pp.207-210 (2005).
[4] Y. Akahane, T. Asano, Bong-Shik Song, S. Noda,”High-Q photonic
nanocavity in a two-dimentional photonic crystal” Nature, Vol. 425,
pp. 944-947 (2003).
[5] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K.
Inoue, “Fabrication and characterization of different types of
two-dimensional AlGaAs photonic crystal slabs”, Appl. Phys. Lett.,
Vol. 91, no. 3, pp. 922 (2002).
[6] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of
photons by a single defect in a photonic bandgap structure” Nature,
Vol. 407, pp. 608 (2000).
[7] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D.
Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect
mode laser” Science, Vol. 284, pp. 1819 (1999).
[8] M. Ariga, Y. Sekido, A. Sakai, T. Baba, A. Matsutani, F. Koyama, and
K. Iga, “Low Threshold GaInAsP Lasers with Semiconductor/Air
Distributed Bragg Reflector Fabricated by Inductively Coupled Plasma
Etching” Jpn. J. Appl. Phys., Vol. 39, part 1, no. 6A, pp. 3406 (2000).
[9] Dan Dalacu, S.Frederick, A. Bogdanov, “Fabrication and optical
characterization of hexagonal photonic crystal microcavities in
InP-based membranes containing InAs/InP quantum dots” J. Appl.
Phys., Vol. 98, 023101 (2005)
[10] Y. Akahane, T. Asano, Bong-Shik Song, S. Noda,”High-Q photonic nanocavity in a two-dimentional photonic crystal” Nature, Vol. 425,
pp. 944-947 (2003).
[11] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K.
Inoue, “Fabrication and characterization of different types of
two-dimensional AlGaAs photonic crystal slabs” Appl. Phys. Lett.,
Vol. 91, no. 3, pp. 922 (2002).
[12] 蔡雅芝,“淺談光子晶體”,物理雙月刊,二十一卷,四期,pp. 445 (1999).
[13] 楊志忠, “新世紀奈米級光電材料結構 – 光子晶體”, 物理雙月刊,二十三卷,六期,pp.647-651 (2001).
[14] 沈彥良,“應用電子束微影術於格式化半導體基板與光子晶體之研製”,國立中山大學光電工程研究所碩士論文 (2004).
[15] 楊紹中,電子束曝寫技術應用於光電元件之介紹,機械工業雜
誌,257期.
[16] 盧贊文、李柏璁,〝光通訊波長二維光子晶體雷射發展簡介〞
物理雙月刊 (廿七卷五期 2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.240.142
論文開放下載的時間是 校外不公開

Your IP address is 3.139.240.142
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code