Responsive image
博碩士論文 etd-0730108-110054 詳細資訊
Title page for etd-0730108-110054
論文名稱
Title
在OSPF網路架構下具動態指定之邊界路由器機制
Mechanisms on Dynamic Appointment of ABR on OSPF Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-24
繳交日期
Date of Submission
2008-07-30
關鍵字
Keywords
階層式
ABR, OSPF
統計
Statistics
本論文已被瀏覽 5724 次,被下載 0
The thesis/dissertation has been browsed 5724 times, has been downloaded 0 times.
中文摘要
捷徑優先公開協定(OSPF)曾被視為inter-domain Internet Protocol (IP)網際路由的標準。它的階層式架構及邊界路由器(ABR)提供了網路擴通性問題相當有效的解決方案。無論如何,目前手動設定邊界路由器(ABR)無法有效處理動態改變的網路負載,也無法有效的解決方。
在論文研究中,提出兩個不同的可行方法。一個是動態指定之邊界路由器機制,另一個是P-median捷徑優先公開協定(OSFP)分類集結機制。
關於一個新的動態指定之邊界路由器機制,這是建立於捷徑優先公開協定(OSPF)階層式網路上的動態指定之邊界路由器機制基於觀測動態的傳輸需求、及時監控網路承載使用率來運作。進而採用運算機制決定是否在新舊邊界路由器(ABR)之間切換,用以避免因動態流量變化所造成的網路壅塞。
本研究所提出另一個法則是P-median捷徑優先公開協定(OSFP)分類集結機制,這個機制是在進行捷徑優先公開協定(OSFP)分類集結子網域來進行P個子網域切割時,可以提供最佳的邊界路由器(ABR)位置。使得子網域內部每個節點到達邊界路由器所花費的權值都達到最小。
Abstract
Open Shortest Path First (OSPF) had been recognized as a de facto standard for inter-domain Internet Protocol (IP) routing. Its hierarchical architecture and the introducing of Area Border Router (ABR) had been proved to be an effective solution to the scalability problem. However, manual selection of ABR may fail to accommodate the dynamic change in the network load and therefore lead to sub-optimal solution. There are two new schemes proposed in this thesis. One scheme is Dynamic Appointment ABR for OSPF (DAA-OSPF). Other one scheme is P-median OSPF Partition Algorithm.
DAA-OSPF scheme is proposed for the dynamic appointment of ABR for OSPF. Based on observed traffic demands and knowledge on link capacities, the proposed scheme will dynamically switch to a new ABR from an old one to avoid incipient link congestion and accompanying performance degradation. In response to traffic change,the proposed approach will locate an adequate ABR for the new traffic pattern and then direct traffics to the new ABR. System performance, in terms of link utilization, throughput, and delay, is expected to benefit from the proposed scheme, as demonstrated in the simulation results.
This study also contributes to the issue of stub area partitioning. According to our study, we recognize that the stub area partitioning problem can be well modeled by the P-median problem in logistics [WR99]. In this study, we extend and refine existing approaches to the P-median problem and apply them to the stub area partitioning problem. The refined P-median algorithm is capable of finding out the optical locations of P ABRs in a network such that the total cost is minimized. With the refined P-median algorithm, the proposed OSPF partitioning scheme is expected to minimize the cost of OSPF hierarchical routing, as well as the cost in subsequent packet transmission.
目次 Table of Contents
Contents Page
List of figures.............................................................................................iii
List of Tables .................................................................................v
Chapter 1 Introduction ........................................................................1
1.1 Motivation ..................................................................................................6
1.2 Objective ...................................................................................................7
1.3 Contributions of the Dissertation .................................................................8
1.4 Structure of Dissertation……………………………………………….8
Chapter 2 Background and Survey of Related work ...........................................9
2.1 Fundamentals of Open Shortest Path First Network .....................................9
2.2 Link State Routing Protocol for OSPF .......................................................13
2.2.1 The Link State Database…………………………………………....14
2.2.2 The Flooding Protocol………………………………………………...16
2.2.3 Link-state advertisements……………………………………………..16
2.2.4 The Common Header…………………………………………………18
2.2.5 OSPF Metric ………………………………………………………….20
2.3 Structure definitions of OSPF…………………………………..............22
2.4 OSPF Route Types……………………………………………………...23
2.5 Related works: Other link State Routing Protocol…………………………25
2.5.1 Max-Flow Min-Cut Theorem…………………………………………25
2.5.2 Traffic engineering for the shortest path……………………………...31
2.5.3 OSPF aggregates approaches…………………………………………32
2.6 P-median Problem………………………………………………………34
2.6.1 One-median Algorithm……………………………………………..35
2.6.2 Myopic algorithm for P-median Algorithm……………………………39
Chapter 3 Dynamic Appointment ABR scheme ..............................................48
3.1 Problem Statement ...................................................................................48
3.2 Methodology: Dynamic Appointment ABR scheme ...................................51
3.3 Performance Evaluation ............................................................................55
Chapter 4 P-median OSPF Partition Algorithm ...............................................56
4.1 Problem Statement ...................................................................................56
4.2 Methodology ............................................................................................56
4.3 P-median OSPF Partition Algorithm .........................................................58
4.4 Coalition Algorithm ..................................................................................71
Chapter 5 Conclusion and future Work ............................................................76
5.1 Conclusion ...............................................................................................76
5.2 Future Work .............................................................................................77
Bibliography ..................................................................................................79
參考文獻 References
Bibliography
[AL00] Aho, A.V. and Lee, D., “Hierarchical networks and the LSA N-squared problem in OSPF routing,” Proceedings of the IEEE Global Telecommunications Conference ( GLOBECOM-20'00), vol. 1, pp.397-404, 2000.
[BAZ+00] Bhattacharjee, S., Ammar, M.H., Zegura, E.W., and Fei, Z., “Application-layer anycast,” IEEE/ACM Transactions on Networking, vol. 8, 2000.
[BBG+03] Rastogi, R., Breitbart, Y., Garofalakis, M., and Kumar, A., “Optimal configuration of OSPF Aggregates”, IEEE/ACM Transactions on Networking, vol.11, no. 2, pp.181 – 194, 2003.
[BG98] Smith, B.R. and Garcia-Luna-Aceves, J.J., “Efficient security mechanisms for the border gateway routing protocol,” Computer Communications, vol. 21, pp. 203-210, 1998.
[CFM99] Coltun, R., Ferguson, D., and Moy, J., OSPF for IPv6, RFC 2740, 1999.
[CKA03] Chan, P.S., , Karuppiah, E.K., and Abdullah, R., “Dynamic routing protocols for anycast packet forwarding”, The 9th Asia-Pacific Conference on Communications (APCC 2003)., vol. 1 , pp. 21-24, 2003.
[CRS97] Cidon, I., Rom, R., and Shaviitt, Y., “Multi-path routing combined with
resource reservation”, IEEE INFOCOM ’97, vol. 1, pp. 92-100, 1997.
[CRS99] Cidon, I., Rom, R. and Shaviitt, Y., “Analysis of multi-path routing,” IEEE/ACM Transactions on Networking, pp. 885-896, 1999.
[CFM99] Coltun, R., Ferguson, D., and Moy, J., OSPF for IPv6, RFC 2740, 1999.
[Cru91] Cruz, R., “A calculus for network delay, part 1: network elements in isolation,” IEEE Transactions on Information Theory, vol 37, no. 1, pp.114-131, 1991.
[Das95] Daskin M., “Network and discrete location, models, algorithms and applications”, in: Wiley Series Book , 1995.
[DeH98] Deering, E. and Hinden, R., Internet Protocol, Version 6, IETF RFC 2460, 1998
[DH03] Deering, S. and Hinden, R., Internet Protocol Version 6 (IPv6) Addressing Architecture, RFC 3513, 2003.
[DZP+06] Dzida, M., Zagozdzon, M., Pioro, M., and Tomaszewski, A., “Optimization of the shortest-path routing with equal-cost multi-path load balancing,” Proceedings of the 2006 International Conference on Transparent Optical Networks, pp. 9-12, 2006.
[EMZ00] Zegura, E.W., Ammar, M.H., and Fei, Z., “Application-layer anycast: a server selection architecture and use in a replicated web service”, IEEE/ACM
Transactions on Networking, vol. 8, no.4, 2000.
[FF05] Fleischman, E. and Furmanski, W., “Mobile exterior gateway protocol: extending IP scalability,” Proceedings of the Military Communications Conference (MILCOM-2005), vol. 4, pp.2055 – 2061, 2005.
[FKO+04] Fujieda, S., Kusumoto, H., Ohara, Y., and Murai, J., “The design of OSPF extension for handling unidirectional-links,” Proceedings of the 2004 Symposium on Applications and the Internet-Workshops (SAINT 2004 Workshops), pp.430, 2004.
[FR07] Feamster, N. and Rexford, J., “Network-wide prediction of BGP routes,” IEEE/ACM Transactions on Networking, vol. 15, pp. 253-266, 2007.
[FRM02] Fortz, B., Rexford, J., and Thorup, M., “Traffic engineering with traditional IP routing protocols,” IEEE Communications Magazine, vol. 40, pp.118-124, 2002.
[GRJ01] Agarwal, G., Shah, R., and Walrand, J, “Content distribution architecture using network layer anycast,” Proceedings of IEEE Conference on Internet Applications, pp.124-312, 2001.
[HiD95] Hinden, R. and Deering, S., IP Version 6 Addressing Architecture, RFC 1884, 1995.
[HiD98] Hinden, R. and Deering, S., IP Version 6 Addressing Architecture, RFC2373, 1998.
[HwS00] Lin, H.-C. and Lai, S.-C., “A simple and effective core placement method for the core based tree multicast routing architecture,” Performance, Computing, and Communications Conference, 2000.
[HZA02] Hao, F., Zegura, E.W., and Ammar, M.H., “Qos routing for anycast communications: motivation and an architecture for diffserv networks,” IEEE Communications Magazine, pp.48-56, 2002.
[JJS+06] Jun, J., Si, C., and Sichitiu, M.L., “WSN13-2: scalable OSPF updates for MANETs,” Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM -2006), pp.1-6, 2006.
[Moy98] Moy, J., OSPF Version 2, RFC 2328, 1998.
[Nsnam] NS2, http://nsnam.isi.edu/nsnam/index.php/Main_Page.
[ONT+02] Ogawa, Y., Nakaya, A., Takamura, K., Yamaha, K., Saitou, S., Iwanaga, K., and Koita, T., “Estimating the performance of a large enterprise network for the updating of routing information,” Proceedings of the IEEE Workshop on IP Operations and Management, pp.161-165, 2002.
[Pos80] Postel, J., User Datagram Protocol, RFC 768, 1980.
[Puz02] Puzmanova, R., Routing and Switching, Addsion-Wesley, 2002.
[Rav02] Malbotra, R., IP Routing, O’Reilly & Associates, 2002.
[RAT+93] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network flows, Theory, Algorithm, and Applications, Prentice Hall, 1993.
[SBL06] Skivee, F., Balon, S., and Leduc, G., “A scalable heuristic for hybrid IGP/MPLS traffic engineering - case study on an operational network,” Proceedings of the 14th IEEE International Conference on Networks (ICON '06), pp. 1-6, 2006.
[SGD05] Sridharan, A., Guerin, R., and Diot, C., “Achieving near-optimal traffic engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM Transactions on Networking, vol. 13, pp. 234–247, 2005.
[SGG+02] Shaikh, A., Goyal, M., Greenberg, A., Rajan, R., and Ramakrishnan, K.K., “An OSPF topology server: design and evaluation”, IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 746-755, 2002.
[Sha87] Shalmon, M., “Exact delay analysis of packet-switching concentrating networks”, IEEE Transactions on Communications, vol. 35, no. 12, pp. 1265-1271, 1987.
[SKS05] Sallabi, F., Karmouch, A., and Shuaib, K., “Design and implementation of a network domain agency for scaleable QoS in the Internet,” Computer Communications, vol. 28, pp. 12-24, 2005.
[ToJ93] Ballardie, T. and Crowcroft, J., “An architecture for scalable inter-domain multicast routing,” Proceedings ACM SIGCOMM’93, pp. 85-95, 1993.
[VWW97] Vetter, B., Wang, F., and Wu, S.F., “An experimental study of insider
attacks for OSPF routing protocol”, 5th IEEE International Conference on Network Protocols, pp. 293-300, 1997.
[WB89] Wang, Y. and Butner, S.E., “RIPS: a platform for experimental real-time sensory-based robot control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, pp. 853-860, 1989.
[WB95] Wollman, W.V. and Barsoum, Y., “Overview of open shortest path first, version 2 (OSPF V2) routing in the tactical environment,” Proceedings of the Military Communications Conference, vol. 3, pp. 5-8, 1995.
[WJC04] Wang, Y.C., Jiang, J.A., and Chu, R.G., “Drop behaviour of random early detection with discrete-time batch Markovian arrival process,” IEE Proceedings on Communications, vol. 151, pp. 329-336, 2004.
[XJZ00] Xuan, D., Jia, W., Zhao, W., and Zhu, H., “A routing protocol for anycast messages,” IEEE Transaction on Parallel and Distributed System, pp. 571-588, 2000.
[WPG+02] Jia, W., Au, P.-O., Xu, G., and Zhao, W., “Scalable multicast routing protocol using anycast tree”, 27th Annual IEEE Conference on Local Computer Networks, 2002.
[WR99] Lai, W.K, and Chang, R.F., “ Virtual path layout in ATM networks based on the P-median problem,” Computer Communications, vol. 22, no. 3, pp. 224-231, 1999.
[WYL02] Wang, Z.L., Yin, X., and Li, Z.J., “A network topology model and its arithmetic in OSPF Protocol testing,” Computer Engineering and Applications,vol. 38, 2002.
[XuZ00] Xuan, D. and Zhao, W., “Integrated routing algorithms for anycast messages,” IEEE Communication Magazine, vol. 38, pp..48-53, 2000.
[XuJ01] Xuan, D. and Jia, W., “Distributed admission control for anycast flows withQos requirements,” The 21st IEEE International Conference on Distributed Computing System, pp. 292-300, 2001.
[Zau91] Zaumen, W.T., “Dynamcis of distributed shortest-path routing algorithms,” ACM SIGCOMM Computer Communications Review, vol. 21, 1991.
[ZeA97] Zegura, E.W. and Ammar, M.H., “Application-layer anycast,” In Proceedings of IEEE INFCOM, pp. 1388-1396, 1997.
[ZSW00] Mai, Z., Wang, S., and Zhao, W., “Group aggregation for scalable anycast routing,” IEEE Communications Magazine, 2000.
[ZWY+04] Li, Z., Jia, W., Wei, Y., and Li, X.-M., “An efficient anycast routing protocol based on multi-metrics”, Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004.
[ZYL93] Li, Z., Wei, Y., Li, X.-M., ”Anycast—another communication model for IP,” Journal of Computer Research and Development, vol. 40, no. 6, pp. 784-790, 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.98.129
論文開放下載的時間是 校外不公開

Your IP address is 3.144.98.129
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code