Responsive image
博碩士論文 etd-0730108-165625 詳細資訊
Title page for etd-0730108-165625
論文名稱
Title
可撓式CuInSe2薄膜太陽能電池之研製
Fabrication of CuInSe2 Thin Film Solar Cell on Flexible Substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-22
繳交日期
Date of Submission
2008-07-30
關鍵字
Keywords
太陽能電池、硒化銅銦
solar cell, CuInSe2
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
本篇論文主要利用共蒸鍍方式,成長 CuInSe2 (簡稱CIS) 主吸收層,並利用不?袗?基板,製作完整可撓式薄膜式太陽電池,元件結構為Al/ZnO:Al/ZnSe(CdS)/CuInSe2/Mo/SiO2/Stainless Steel。
論文之研究,吾人利用二階段方式成長主吸收層CIS薄膜,並以片電阻量測結果,設定鍍膜參數,進行元件製程。於AM1.5、100mW/cm2 模擬光源下,比較不同製程條件之元件,結果顯示主吸收層CIS薄膜厚度由500nm增加至1.5μm時,開路電壓與短路電流皆有所提升,比對光吸收係數,求得所需膜厚為1μm可吸收大部分之入射光。而採用三階段方式成長之CIS薄膜,表面較為平整,元件有較佳的表現。組成方面,利用具定比線試片,比較在Cu-rich與In-rich條件下成長之CIS所製成之元件`。隨緩衝層CdS的加入,有效改善元件CIS與AZO間之接面,漏電流問題得已處理,填充因子也有所提升。
採相同元件結構鍍製於不?袗?與玻璃基板上,玻璃基板結果:開路電壓為 0.38 V、短路電流密度 30.5 mA/cm2 、填充因子FF = 38.6 %,轉換效率為 4.5 %,不?袗?基板結果:開路電壓為 0.2 V、短路電流密度 41.7 mA/cm2 、填充因子FF = 31.2 %,轉換效率為 2.6 %。
Abstract
This paper describes an investigation into the fabrication of absorber layer CuInSe2 films by co-evaporation process. And we used the stainless steel substrates to manufacture Al / ZnO:Al /ZnSe(CdS) / CuInSe2 / Mo /SiO2 / Stainless Steel(SS) flexible thin-film solar cell.
In this study, we fabricated the main absorber layer CIS thin film by co-evaporation process including two steps, and CIS thin films parameters were estimated by sheet resistance. Under one-sun (AM1.5,100mW/cm2) conditions solar simulator, we compared the solar cell with different thickness of absorber layer, co-evaporation process and composition to improve solar cell performance.
The energy conversion efficiency of the CIS thin-film solar cell (Al/ AZO/ CdS /CIS/Mo/ SLG) was 4.5﹪(Voc =0.38 V,Jsc = 30.5 mA ,FF = 38.6 ﹪), flexible solar cell (Al/AZO/CdS/CIS/Mo/SiO2/SS) was 2.6%( Voc =0.2 V,Jsc = 41.7 mA ,FF = 31.2 %).
目次 Table of Contents
目錄
第一章 簡介 1
1.1前言 1
1.2 CUINSE2太陽電池之研究發展 3
1.3 CUINSE2薄膜性質 4
1.4元件設計分析與探討 7
1.4.1元件結構設計 7
1.4.2 元件轉換效率之基本參數 11
1.4.2各層薄膜之特性 12
1.5 研究目的 25
第二章 薄膜製程系統、實驗步驟 26
2.1 薄膜製程系統 26
2.1.1 三槍磁控濺鍍系統: 26
2.1.2 共焦磁控濺鍍系統: 27
2.1.3 分子束蒸鍍系統I (Molecular Beam Deposition) 28
2.1.4 分子束蒸鍍系統II 29
2.2 元件製造流程與步驟 31
2.2.1 不?袗?基板之處理 31
2.2.2 SiO2薄膜之鍍製 32
2.2.3 鉬薄膜之鍍製 33
2.2.4 共蒸鍍成長CIS薄膜 33
2.2.5 硒化鋅之鍍製 35
2.2.6 CdS之鍍製 37
2.2.6 ZnO:Al之鍍製 37
2.2.7 鋁金屬電極成長 37
2.2.8 硒化法成長CIGS薄膜 38
第三章 薄膜特性分析方法與儀器 40
3.1 X-RAY 繞射儀 40
3.2掃描式電子顯微鏡 (SEM) 40
3.3霍爾量測 (HALL MEASUREMENT) 40
3.4四點探針 (FOUR-POINT PROBE) 40
3.5熱探針量測 (HOT PROBE) 41
3.6吸收光譜儀 (SPECTROPHOTOMETER) 42
3.7反射光譜儀 (SPECTRAL REFLECTANCE MEASUREMENT) 43
3.8電流-電壓特性曲線量測 (I-V MEASUREMENT) 43
3.9 Α -STEP 量測 43
第四章 實驗結果與討論 44
4.1 二氧化矽之鍍製 44
4.2 MO金屬背電極 46
4.3 CUINSE2主吸收層 51
4.4 ZNSE 緩衝層 64
4.5 AZO透光層 66
4.6 AL金屬上電極 71
4.7 硒化法合成之CIGS薄膜 72
4.8元件之製作與元件量測 76
第五章 結論 98
第六章 參考文獻 100
參考文獻 References
1. Zweibel, K., Harnessing solar cell-The photovoltaics challenge. 1990.
2. Adams, W.G. and R.E. Day, Proc. R. Soc., 1877. A25: p. 113.
3. Schock, H.W., Thin film photovoltaics. Applied surface science, 1996.92: p. 606-616.
4. Chu, N. and D. Honeman, Solar cells, 1991. 31: p. 197.
5. Hedstrom, J., et al., ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells withimproved performance. IEEE, 1993: p. 364-371.
6. Ramanathan, K., et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 Thin-film solar cell. Prog. Photovolt: Res. Appl.,2003. 11: p. 225-230.
7. Shimizu, A., et al., Znic-based buffer layer in the Cu(In,Ga)Se2 thin film solar cells. Thin solid films, 2000. 361-362: p. 193-197.
8. Olsen, L.C., et al., Non-Cadmium ZnO/CIS and ZnSe/CIS solar cells. First WCPEC, 1994: p. 194-197.
9. Eisele, W., et al., New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells. IEEE, 2000: p.692-695.
10. Shay, J.L. and J.H. Wernick, Ternary chalcopyrite semiconductors : Growth, Electronic properties, and applications. 1975.
11. Tuttle, D. Albin, J Goral, C. Kennedy and R. Noufi; Solar Cell, 24(1988),67
12. Neumann and R.D. Tomlinson; Solar Cell, 28(1990),301
13. F. Abou-Elfotouh, D. J. Dunlavy and T.J. Coutts; Solar Cell, 27(1986),237
14. J. A. Thornton, T.C. Lommasson, H.Talidh and B.H. Tseng, Solar Cell, 24(1988)
15. D. Temjurbar and J.Phirde, Thin Solid Films, 215(1992) 65
16. C.Guillen and J. Herrero, Journal of Applied Physics,71(11)(1992)5479.
17. K. Subbaramaiah and V.Sundaraja, Thin Solid Films, 207(1992)247
18. K. Subbaramaiah and V.Sundaraja, Thin Solid Films, 28(1992)247
19. F.J. Garcia and M.S. Tomar, Japan Journal of Applied physics, 22,Suppl.1(19483),535.
20. S.P. Grindle, C.W. Smith and S.D. Mittleman, Applied Physics Letters, 35(1)(1979),24.
21. J. A. Thornton, T.C. Lommasson, H.Talidh and B.H. Tseng, Solar Cell, 24(1988)
22. D. Temjurbar and J.Phirde, Thin Solid Films, 215(1992) 65
23. N. Kavcar, M.J. Carter and R. Hill, ASolar energy Materials and Solar Cells , 27 (1992), 13.
24. L. L. Kazmerski, M. Hallerdt, P. J. Ireland, R. A. Mickelsen and W. S. Chen, Journal of Vacuum Science Technology. Al (1983), 395.
25. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition John-Wiley & Sons, Ch4, p.89 (2001)
26. J. Britt, S. Wiedemann, R. Wendt, S. Albright, Technical Report NRELySR-520-26840, 1999, p. 1.
27. T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi, T. Negami, Proceedings of the 12th Int. Phot. Sci. and Eng. Conf., Korea, 2001, p. 93.
28. Friedrich Kessler, Dominik Rudmann, Solar Energy 77(2004) 685-695.
29. M. Hartmann, M. Schmidt, A. Jasenek, H.-W. Schock, F. Kessler, K. Herz, M. Powalla, Proceedings of the 28th IEEE Phot. Spec. Conf., Anchorage, 2000, p. 638.
30. F. Kessler, K. Herz, M. Powalla, M. Hartmann, M. Schmidt, A. Jasanek, H.W. Schock, Proceeding Vol. 668 of the Mat. Res. Soc. Symp., San Francisco, 2001, p. H3.6.1.
31. K. Herz, F. Kessler, R. Wa‥chter, M. Powalla, J. Schneider, A. Schulz, U. Schumacher, Thin Solid Films 403–404 (2002) 384.
32. K. Orgassa, et al. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films 431-432 (2003) 387-391.
33. W.N. Shafarman, J.E. Phillips, Proceedings of the 25th IEEE Photovolt. Spec. Conf. IEEE, Washington, D.C., 1996, p. 917.
34. T. Wada, N. Kohara, T. Negami, M. Nishitani, Jpn. J. Appl. Phys. 35 (1996) L1253.
35. T. Dullweber, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells, Thin Solid Films 387 (2001) 11-13.
36. M. Gloeckler, J.R. Sites, Band-gap grading in Cu(In,Ga)Se2 solar cells. Journal of Physics and Chemistry of Solids 66 (2005) 1891-1894.
37. A. Zunger, S.B. Zhang, S.-H. Wei, 26th IEEE Photovoltaic SpecialistsConference, 1997, Anaheim, CA, Institute of Electrical and Electronics Engineers, New York, 1997, p. 313
38. W.N. Shafarman, R. Klenk, B.E. MeCandless, J. Appl. Phys. 79 (9) (1996) 7324.
39. D.J. Schroeder, J.L. Hernandez, G.D. Berry, A. Rockett, J. Appl. Phys. 83 (3) (1998) 1519.
40. T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.W. Schock, Study of the effect of gallium grading in Cu(In,Ga)Se2, Thin Solid Films 361–362 (2000) 478–481.
41. R. Caballero, et al. CuIn1-xGaxSe2-Based thin film solar cells by the selenization of sequentially evaporated metallic layers. Prog. Photovolt: Res. Appl. 2006; 14:145-153
42. A. Rockeet, The electronic effects of point defects in Cu(InxGa1-x)Se2, Thin Solid Films 361-362 (2000) 330-337
43. Bodegard M, Kessler J, Lundberg O, Scholdstrom J, Stolt L. Growth of Co-evaporated Cu(In;Ga)Se2—the influence of rate profiles on film morphology. Proceedings of the MRS Conference, San Francisco, 2001; 2.2.1.
44. Powalla M, Dimmler B. Scaling up issues of CIGS solar cells. Thin Solid Films 2000; 361–362: 540–546.
45. Probst V, Stetter W, Riedl W, Vogt H, Wendl M, Calwer H, Zweigart S, Ufert K-D, Freienstein B, Cerva H, Karg FH. Rapid CIS-process for high efficiency PV-modules: development towards large area processing. Thin Solid Films 2001; 387: 262–267.
46. Meakin JD. Status of CuInSe2 Solar Cells. Spie 1985; 543: 108–118.
47. Olle Lundberg, et al. Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance. Progress in photovoltaics: research and applications. Prog. Photovolt: Res. Appl. 2003; 11:77-88.
48. Miguel A. Contreras, Kannan Ramanathan, Jehad A. M. AbuShama, F. Hasoon, David L. Young, B. Egaas and Rommel Noufi, Prog. Photovolt., 13, 209-216 (2005)
49. D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., 31 292 (1977)
50. D. Hariskos, et al. Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films.480-481, 99-109 (2005)
51. K. Ramanathan, et al. Conference record of the 26th IEEE PVSC, pp. 319 (1997)
52. Eisele, W. et al. IEEE, pp. 692-695 (2000)
53. Gordillo, G. et al. IEEE, pp. 614-617 (2001)
54. T. Naakada, M. Mizutani, Y. Hagiwara, A.Kunioka, Solar Energy Material and Solar Cell ,67(2001)255
55. Leeor Kunioka, Uwe Rau, Jean-Francois Guillemoles,Dieter Braunger, Hans-Werner Schock, David Cahen, Thin Solid Films,361-362(2000)353
56. Ji-Beom Yoo, Aianl. Fahrenbruch and Richard H. Bube ,Solar Cells 31(1991) 171.
57. A. Nouhi, R. J. Stirn and A. Hermann, 19th IEEE PVS C, 1987,p.1461
58. K. Ellmer, et al. D. c. and r. f. (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets : a comparative study. Surface and Coatings Technology. 93, p.21-26 (1997)
59. K. Ellmer, J. Phys. D: Appl. Phys., 34(2001) 3097-3108
60. R.B.H. Tahar, T.Ban, Y.Ohya, Y.Takahashi, J. Appl. Phys.,83(1998)2631
61. Y. Jinsu, et al. High transmittance and low resistive ZnO:Al films for thin film solar cells. Thin Solid Films. 480-481, p.213-217 (2005)
62. W. J. Jeong, et al. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films. 506-507, p.180-183 (2006)
63. Hans Joachim MŐller, Semiconductor solar cell, Artech House, Boston ∙ London, Ch.2 P.41.
64. Z. Zhu, MBE growth mechanisms of ZnSe:Flux ratio and substrate temperature, Journal of crystal growth. 95, p.529-532 (1989)
65. Z. Zhu, MBE growth mechanisms of ZnSe:Growth rate and surface coverage, Journal of crystal growth. 96, p.513-518 (1989)
66. Hiroshi KUKIMOTO, J. Cryst. Growth 953/957 (1990)101
67. J. Ren, K.A. Bowers, S. Hwang, J.w. Cook, Jr and J.F.Schetzina, J. Cryst. Growth 772/775 (1991) 111.
68. M.A. Haase, H. Cheng, J.M. DePuydt, and J.E. Potts,J.Appl. Phys. 67(1990) 1.
69. T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.W. Schock, Study of the effect of gallium grading in Cu(In,Ga)Se2, Thin Solid Films 361–362 (2000) 478–481.
70. Y. Ogawa, A. Jager-Waldau, T. H. Hua, Y. Hashimoto, K. Ito, Applied Surface Science, 92(1996) 232-236
71. 徐有欽,CuInSe2:Sb複晶薄膜太陽能電池之研究,國立中山大學材料科學研究所碩士論文(2003)
72. Y. Ohtake, et al. Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers. Jpn. J. Appl. Phys. 34, p.5949-5955 (1995)
73. 謝佳和,硒化鋅透光層及浮子成長技術對CuInSe2薄膜太陽能電池特性之影響,國立中山大學材料科學研究所碩士論文(2002)
74. Gordillo, G. et al. Study of optical, structural and morphological properties on Cd-free buffer materials. IEEE. p.614-617 (2000)
75. Y. Ohtake, et al. Characterization of ZnInxSey Thin Films as a Buffer Layer for High Efficiency Cu(InGa)Se2 Thin-Film Solar Cells. Jpn. J. Appl. Phys. 34, p.3220-3225 (1998)
76. S. Dengyuan, et al. Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application. Applied Surface Science. 195, 291–296 (2002)
77. B. Dimmler, H. Dittrich, R. Menner, H.W. Schock, Proc. 19th IEEEPhotovoltaic Spec. Conf., IEEE, New York, 1987, p. 1454.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.198.43
論文開放下載的時間是 校外不公開

Your IP address is 3.140.198.43
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code