Responsive image
博碩士論文 etd-0730108-171605 詳細資訊
Title page for etd-0730108-171605
論文名稱
Title
過氧化增生活化受體致活劑Rosiglitazone藉由抑制大鼠延腦鼻端腹外側核區氧化壓力產生抗高血壓作用之研究
Suppression of Oxidative Stress in the Rostral Ventrolateral Medulla Contributes to Antihypertensive Effect of the Peroxisome Proliferator Activated Receptor Activator Rosiglitazone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-21
繳交日期
Date of Submission
2008-07-30
關鍵字
Keywords
解偶聯蛋白質、超氧陰離子、鼻端腹外側核、高血壓、過氧化增生活化受體
UCP, superoxide anion, RVLM, hypertension, PPAR
統計
Statistics
本論文已被瀏覽 5675 次,被下載 3252
The thesis/dissertation has been browsed 5675 times, has been downloaded 3252 times.
中文摘要
過氧化增生活化受體 (peroxisome proliferator activated receptors, PPARs) 為一群因受體興奮後誘發活化之轉錄因子,已證實參與血糖恆定與脂肪代謝過程。近期研究發現具有降高血壓作用,但造成此一作用之機轉並不明瞭。過去實驗室研究成果顯示,位於延腦鼻端腹外側核區 (rostral ventrolateral medulla, RVLM) 控制中樞交感神經輸出之神經細胞,會因為細胞含有較高含量之超氧陰離子 (superoxide anion, Ο2•−),造成氧化傷害 (oxidative stress),而導致交感神經血管活性增強及高血壓表徵。
因此本論文假設,在延腦鼻端腹外側核區,活化過氧化增生活化受體,藉由減緩細胞氧化傷害,在高血壓狀況下可產生降血壓效果。研究以成熟雄性自發性高血壓大鼠 (spontaneously hypertensive rats, SHR) 與正常血壓 (normotensive Wistar-Kyoto, WKY) 大鼠為實驗動物,利用微量注射方式將過氧化增生活化受體致活劑 (PPARγ agonist) Rosiglitazone (1 nmol) 給予到雙側延腦鼻端腹外側核區,發現給藥 後,在SHR 或WKY 大鼠均可造成平均動脈血壓及心跳下降,並且 SHR 下降的幅度大於WKY 大鼠。此外,降血壓的同時也伴隨著 RVLM 細胞內的超氧陰離子含量減少和抗氧化物解偶聯蛋白質 (uncoupling protein, UCPs) 的正向調節。相較於WKY 大鼠,實驗結果發現Rosiglitazone 在SHR 延腦鼻端腹外側核區對上述兩種現象之影響顯著加強。在PPARγ 蛋白質表現方面,給予Rosiglitazone 後SHR 之PPARγ 蛋白質也顯著比WKY 大鼠含量增高。另一方面,利用合併給予PPARγ 致活劑與拮抗劑GW9662 (5 nmol) 之實驗結果顯示,平均動脈血壓有回升之情形,因此GW9662 對於Rosiglitazone 具有可逆作用。綜合上述的結果,我們推論過氧化增生活化受體參與延腦鼻端腹外側核區之降血壓及心跳作用,是經由抑制超氧陰離子產生和增加抗氧化功能之UCPs 表現。因此,在延腦鼻端腹外側核區PPARγ含量減少可能與神經性高血壓有相關性。
Abstract
Peroxisome proliferator activated receptors (PPAR) are members of the nuclear receptor family that act as transcription factors to regulate target gene expression. In addition to their well-known effects in regulation of glucose homeostasis and lipid metabolism, PPAR activators have recently been shown to exert antihypertensive effects, although the underlying mechanism is not clear. Our laboratory has previously demonstrated that oxidative stress of an augmented tissue level of superoxide anion (Ο2•−) in the rostral ventrolateral medulla (RVLM), where promotor neurons for generation of sympathetic vasomotor outflow reside, contributes to neural mechanism of hypertension. I therefore propose to test in my thesis the hypothesis that protection against oxidative stress after activation of the PPARs in the RVLM may contribute to the antihypertensive effect of these transcription factors.
Experiments were performed in the spontaneously hypertensive rats (SHR) or normotensive Wistar-Kyoto (WKY) rats under anesthesia or conscious condition. Compared to WKY rats, microinjection bilaterally into the RVLM of a synthetic activator of PPARγ, rosiglitazone (1 nmol), evoked significantly greater decreased in mean systemic arterial pressure (MSAP) and heart rate (HR) in SHR. These cardiovascular suppressive
effects of rosiglitazone were accompanied by greater decrease in tissue level of O2
- and upregulation of the antioxidant uncoupling proteins (UCPs) in the RVLM of SHR. Rosiglitazone also caused a significant greater increase in PPARγ expression in the nuclear extracts from RVLM of SHR than WKY rats. All these cellular events induced by rosiglitazone were antagonized by co-administration into the RVLM of the PPARγ inhibitor, GW9662 (5 nmol). This PPARγ inhibitor also significantly reversed the cardiovascular depressive effects of rosiglitazone. Together these results suggest that PPARγ in the RVLM may participate in central cardiovascular regulation by promoting hypotension and bradycardia via amelioration of O2- production and upregulation of antioxidant UCPs. Moreover, a downregulation of the PPARγ in the RVLM may contribute to neural mechanism of hypertension.
目次 Table of Contents
正文目錄

頁次
第一章 緒論與文獻回顧 1
第二章 研究動機與目的 24
第三章 實驗材料和方法 28
第四章 實驗結果 40
第五章 討論 48
第六章 結論 60
第七章 未來研究方向 62
參考文獻 65
附圖 81
參考文獻 References
Adams SH. Uncoupling protein homologs: Emerging views of physiological function. J Nutr. 2000;130:711-714.
Ally A. Ventrolateral medullary control of cardiovascular activity during muscle contraction. Neurosci Biobehav Rev. 1998;23:65-86.
Andresen MC, Doyle MW, Bailey TW, Jin YH. Differentiation of autonomic reflex control begins with cellular mechanisms at the first
synapse within the nucleus tractus solitarius. Braz J Med Biol Res. 2004;37:549-558.
Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: In support of function and survival. Nat Rev Neurosci. 2005;6:829-840.
Bagi Z, Koller A, Kaley G. PPARγ activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with type 2 diabetes. Am J Physiol Heart Circ Physiol. 2004;286:H742-748.
Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O'Rahilly S. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature.
1999;402:880-883.
Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des. 2004;10:1611-1626.
Bernardo A, Minghetti L. Regulation of glial cell functions by PPAR-γ natural and synthetic agonists. PPAR Res. 2008;2008:864140.
Bézaire V, Seifert EL, Harper ME. Uncoupling protein-3: Clues in an ongoing mitochondrial mystery. FASEB J. 2007;21:312-324.
Bishop-Bailey D. Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol. 2000;129:823-834.
Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M. PPAR: A new pharmacological target for neuroprotection in stroke and
neurodegenerative diseases. Biochem Soc Trans. 2006;34:1341-1346.
Boss O, Hagen T, Lowell BB. Uncoupling proteins 2 and 3: Potential regulators of mitochondrial energy metabolism. Diabetes. 2000;49:143-156.
Boss O, Muzzin P, Giacobino JP. The uncoupling proteins, a review. Eur J Endocrinol. 1998;139:1-9.
Bouillaud F, Couplan E, Pecqueur C, Ricquier D. Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochim Biophys Acta. 2001;1504:107-119.
Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs):
Tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology.
1996;137:354-366.
Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37:755-767.
Brody MJ. Central nervous system mechanisms of arterial pressure regulation. Fed Proc. 1986;45:2700-2706.
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res. 2000;87:840-844.
Calaresu FR, Yardley CP. Medullary basal sympathetic tone. Annu Rev Physiol. 1988;50:511-524.
Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J. Uncoupling proteins: A role in protection against reactive oxygen species--or not? Biochim Biophys Acta. 2006;1757:449-458.
Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Jr., Chan RK, Sawchenko PE. Organization and transmitter specificity of medullary neurons activated by sustained hypertension: Implications for understanding baroreceptor reflex circuitry. J Neurosci. 1998;18:371-387.
Chan SHH, Tai MH, Li CY, Chan JYH. Reduction in molecular synthesis or enzyme activity of superoxide dismutase and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic Bio Med. 2006;40:2028-2039.
Chan SHH, Wang LL, Tseng HL, Chan JYH. Upregulation of AT1 receptor gene on activation of PKCβ-NADPH Oxidase-ERK1/2-c-fos
signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. J Hypertens. 2007;25:1845-1861.
Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Cir Res. 2005;97:772-780.
Chen SD, Wu HY, Yang DI, Lee SY, Shaw FZ, Lin TK, Liou CW, Chuang YC. Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun. 2006;351:198-203.
Chetty VT, Sharma AM. Can PPARγ agonists have a role in the management of obesity-related hypertension? Vascul Pharmacol. 2006;45:46-53.
Chuang YC, Chan JYH, Chang AYW, Sikorska M, Borowy-Borowski H, Liou CW, Chan SHH. Neuroprotective effects of coenzyme Q10 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock. 2003;19:427-432.
Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R. Modulation of the oxidative stress and inflammatory response by PPAR-γ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol. 2006;530:70-80.
Lopes OU. Role of the medulla oblongata in hypertension. Hypertension. 2001;38:549-554.
Cotgreave IA, Moldeus P, Orrenius S. Host biochemical defense mechanisms against prooxidants. Annu Rev Pharmacol Toxicol. 1988;28:189-212.
Crowley VE, Yeo GS, O'Rahilly S. Obesity therapy: Altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov. 2002;1:276-286.
Cuzzocrea S, Mazzon E, Dugo L, Di Paola R, Caputi AP, Salvemini D. Superoxide: A key player in hypertension. FASEB J. 2004;18:94-101.
Dampney RA, Goodchild AK, Robertson LG, Montgomery W. Role of ventrolateral medulla in vasomotor regulation: A correlative anatomical and physiological study. Brain Res. 1982;249:223-235.
Douette P, Sluse FE. Mitochondrial uncoupling proteins: New insights from functional and proteomic studies. Free Radic Biol Med. 2006;40:1097-1107.
DrÖge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95.
Echtay KS. Mitochondrial uncoupling proteins--what is their physiological role? Free Radic Biol Med. 2007;43:1351-1371.
Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002;415:96-99.
Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello Russo C. Receptor-independent actions of PPAR thiazolidinedione agonists: Is mitochondrial function the key? Biochem Pharmacol. 2005;70:177-188.
Ferrari R, Ceconi C, Curello S, Cargnoni A, Pasini E, De Giuli F, Albertini A. Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr. 1991;53:215S-222S.
Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84:131-141.
Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q 4th, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK. p22phox
mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res. 1997;80:45-51.
Gonzalez FJ, Peters JM, Cattley RC. Mechanism of action of the nongenotoxic peroxisome proliferators: Role of the peroxisome
proliferator-activator receptor α. J Natl Cancer Inst. 1998;90:1702-1709. Granata AR, Kumada M, Reis DJ. Sympathoinhibition by
A1-noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J Auton Nerv Syst. 1985;14:387-395.
Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ. Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension. 1983;5:V80-84.
Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation. 2003;108:2034-2040.
Grimaldi PA. Regulatory functions of PPARβ in metabolism: Implications for the treatment of metabolic syndrome. Biochim Biophys Acta. 2007;1771:983-990.
Gross BS, Fruchart JC, Staels B. Peroxisome Proliferator-Activated Receptor β/δ: A novel target for the reduction of atherosclerosis. Drug Discovery Today: Therapeutic Strategies. 2005;2:237-243.
Grossman E. Rosiglitazone reduces blood pressure and urinary albumin excretion in type 2 diabetes: G Bakris et al. J Hum Hypertens. 2003;17:5-6.
Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335-346.
Guyenet PG, Darnall RA, Riley TA. Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am J Physiol. 1990;259:R1063-1074.
Hameroff SR, Otto CW, Kanel J, Weinstein PR, Blitt CD. Acute cardiovascular effects of dimethylsulfoxide. Crit Care Med. 1981;9:855-857.
Haselton JR, Guyenet PG. Electrophysiological characterization of putative C1 adrenergic neurons in the rat. Neuroscience. 1989;30:199-214.
Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015-1069.
Heikkinen S, Auwerx J, Argmann CA. PPARγ in human and mouse physiology. Biochim Biophys Acta. 2007;1771:999-1013.
Heneka MT, Landreth GE. PPARs in the brain. Biochim Biophys Acta. 2007;1771:1031-1045.
Huang TH, Razmovski-Naumovski V, Kota BP, Lin DS, Roufogalis BD. The pathophysiological function of peroxisome proliferator-activated receptor-γ in lung-related diseases. Respir Res. 2005;6:102.
Hwang J, Kleinhenz DJ, Rupnow HL, Campbell AG, Thule PM, Sutliff RL, Hart CM. The PPARγ ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice. Vasc Pharmacol. 2007;46:456-462.
Jacob RA. The integrated antioxidant system. Nutr Res. 1995;15:755-766.
Jezek P. Possible physiological roles of mitochondrial uncoupling proteins--UCPn. Int J Biochem Cell Biol. 2002;34:1190-1206.
Jezek P, Hlavatà L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005;37:2478-2503.
Kersten S. Peroxisome proliferator activated receptors and obesity. Eur J Pharmacol. 2002;440:223-234.
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357-2362.
Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85-94.
Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6:248-261.
Kudzma DJ. Effects of thiazolidinediones for early treatment of type 2 diabetes mellitus. Am J Manag Care. 2002;8:S472-482.
Kuo TBJ, Yang CCH, Chan SHH. Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol. 1997;272:H485-492.
Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett. 2003;543:5-10.
Lassègue B, Griendling KK. Reactive oxygen species in hypertension; an update. Am J Hypertens. 2004;17:852-860.
Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunket KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG. Functional consequences of cysteine modification in the ligand binding sites ofperoxisome proliferator activated receptors by GW9662. Biochemistry. 2002;41:6640-6650.
Lehrke M, Lazar MA. The many faces of PPARγ. Cell. 2005;123:993-999.
Leibovitz E, Schiffrin EL. PPAR activation: A new target for the
treatment of hypertension. J Cardiovasc Pharmacol. 2007;50:120-125.
Li YW, Guyenet PG. Angiotensin II decreases a resting k+ conductance in
rat bulbospinal neurons of the C1 area. Circ Res. 1996;78:274-282.
Lu C, Mattson MP. Dimethyl sulfoxide suppresses NMDA- and
AMPA-induced ion currents and calcium influx and protects against
excitotoxic death in hippocampal neurons. Exp Neurol.
2001;170:180-185.
Luquet S, Lopez-Soriano J, Holst D, Gaudel C, Jehl-Pietri C, Fredenrich
A, Grimaldi PA. Roles of peroxisome proliferator-activated receptor delta
(PPARδ) in the control of fatty acid catabolism. A new target for the
treatment of metabolic syndrome. Biochimie. 2004;86:833-837.
Malinowski JM, Bolesta S. Rosiglitazone in the treatment of type 2
diabetes mellitus: A critical review. Clin Ther. 2000;22:1151-1168.
Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH,
Pan G. UCP4, a novel brain-specific mitochondrial protein that reduces
membrane potential in mammalian cells. FEBS Lett. 1999;443:326-330.
Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and
human diseases. Clin Biochem. 1999;32:595-603.
McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S.
Paraquat induces oxidative stress and neuronal cell death; neuroprotection
by water-soluble coenzyme Q10. Toxicol Appl Pharmacol.
2004;201:21-31.
McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in
hypertension: The role of superoxide anion. Hypertension.
1999;34:539-545.
Melley DD, Evans TW, Quinlan GJ. Redox regulation of neutrophil
apoptosis and the systemic inflammatory response syndrome. Clin Sci
(Lond). 2005;108:413-424.
Mittal CK, Murad F. Activation of guanylate cyclase by superoxide
dismutase and hydroxyl radical: A physiological regulator of guanosine
3',5'-monophosphate formation. Proc Natl Acad Sci U S A.
1977;74:4360-4364.
Nakano R, Kurosaki E, Yoshida S, Yokono M, Shimaya A, Maruyama T,
Shibasaki M. Antagonism of peroxisome proliferator-activated receptor γ
prevents high-fat diet-induced obesity in vivo. Biochem Pharmacol.
2006;72:42-52.
Nedergaard J, Ricquier D, Kozak LP. Uncoupling proteins: Current status
and therapeutic prospects. EMBO Rep. 2005;6:917-921.
Nisbet RE, Sutliff RL, Hart CM. The role of peroxisome
proliferator-activated receptors in pulmonary vascular disease. PPAR Res.
2007;2007:18797.
Nohl H, Gille L, Staniek K. Endogenous and exogenous regulation of
redox-properties of coenzyme Q. Mol Aspects Med. 1997;18
Suppl:S33-40.
Ootsuka Y, Terui N. Functionally different neurons are organized
topographically in the rostral ventrolateral medulla of rabbits. J Auton
Nerv Syst. 1997;67:67-78.
Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann
Intern Med. 2003;139:761-776.
Papa S. Mitochondrial oxidative phosphorylation changes in the life span.
Molecular aspects and physiopathological implications. Biochim BiophysActa. 1996;1276:87-105.
Potenza MA, Marasciulo FL, Tarquinio M, Quon MJ, Montagnani M.
Treatment of spontaneously hypertensive rats with rosiglitazone and/or
enalapril restores balance between vasodilator and vasoconstrictor actions
of insulin with simultaneous improvement in hypertension and insulin
resistance. Diabetes. 2006;55:3594-3603.
Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and
ageing. Trends Biochem Sci. 2000;25:502-508.
Ricquier D, Bouillaud F. Mitochondrial uncoupling proteins: From
mitochondria to the regulation of energy balance. J Physiol.
2000;529:3-10.
Ricquier D, Fleury C, Larose M, Sanchis D, Pecqueur C, Raimbault S,
Gelly C, Vacher D, Cassard-Doulcier AM, Levi-Meyrueis C, Champigny
O, Miroux B, Bouillaud F. Contributions of studies on uncoupling
proteins to research on metabolic diseases. J Intern Med.
1999;245:637-642.
Romero JC, Reckelhoff JF. Role of angiotensin and oxidative stress in
essential hypertension. Hypertension. 1999;34:943-949.
Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M, Okamoto Y,
Mattie MD, Higashiyama H, Asano S, Strum JC, Ryan TE. Adipose
mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed
mice and improved by rosiglitazone. Diabetes. 2007;56:1751-1760.
Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM,
Bouillaud F, Ricquier D. The biology of mitochondrial uncoupling
proteins. Diabetes. 2004;53 Suppl 1:S130-135.
Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin
resistance and type II diabetes. Diabetes. 1996;45:1661-1669.
Sarafidis PA, Lasaridis AN. Actions of peroxisome proliferator-activated
receptors-γ agonists explaining a possible blood pressure-lowering effect.Am J Hypertens. 2006;19:646-653.
Saraste M. Oxidative phosphorylation at the fin de siècle. Science.
1999;283:1488-1493.
Saybasili H, Yuksel M, Haklar G, Yalcin AS. Effect of mitochondrial
electron transport chain inhibitors on superoxide radical generation in rat
hippocampal and striatal slices. Antioxid Redox Signal.
2001;3:1099-1104.
Schiffrin EL. Peroxisome proliferator-activated receptors and
cardiovascular remodeling. Am J Physiol Heart Circ Physiol.
2005;288:H1037-1043.
Schiffrin EL, Amiri F, Benkirane K, Iglarz M, Diep QN. Peroxisome
proliferator-activated receptors: Vascular and cardiac effects in
hypertension. Hypertension. 2003;42:664-668.
Schoonjans K, Staels B, Auwerx J. Role of the peroxisome
proliferator-activated receptor (PPAR) in mediating the effects of fibrates
and fatty acids on gene expression. J Lipid Res. 1996;37:907-925.
Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body
metabolism. J Exp Biol. 2002;205:2275-2285.
Seimandi M, Lemaire G, Pillon A, Perrin A, Carlavan I, Voegel JJ,
Vignon F, Nicolas JC, Balaguer P. Differential responses of PPARα,
PPARδ, and PPARγ reporter cell lines to selective PPAR synthetic
ligands. Anal Biochem. 2005;344:8-15.
Sen CK, Packer L. Antioxidant and redox regulation of gene transcription.
FASEB J. 1996;10:709-720.
Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and
mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91:10771-10778.
Somayajulu M, McCarthy S, Hung M, Sikorska M, Borowy-Borowski H,
Pandey S. Role of mitochondria in neuronal cell death induced by
oxidative stress; neuroprotection by coenzyme Q10. Neurobiol Dis.
2005;18:618-627.
Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E,
Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein
metabolism. Circulation. 1998;98:2088-2093.
Sved AF, Ito S, Madden CJ. Baroreflex dependent and independent roles
of the caudal ventrolateral medulla in cardiovascular regulation. Brain
Res Bull. 2000;51:129-133.
Szasz T, Thakali K, Fink GD, Watts SW. A comparison of arteries and
veins in oxidative stress: Producers, destroyers, function, and disease.
Exp Biol Med (Maywood). 2007;232:27-37.
Tai MH, Wang LL, Wu KLH, Chan JYH. Increased superoxide anion in
rostral ventrolateral medulla contributes to hypertension in spontaneously
hypertensive rats via interactions with nitric oxide. Free Radic Biol Med.
2005;38:450-462.
Tain YL, Baylis C. Dissecting the causes of oxidative stress in an in vivo
model of hypertension. Hypertension. 2006;48:828-829.
Tan NS, Michalik L, Desvergne B, Wahli W. Multiple expression control
mechanisms of peroxisome proliferator-activated receptors and their
target genes. J Steroid Biochem Mol Biol. 2005;93:99-105.
Thrasher TN. Baroreceptors, baroreceptor unloading, and the long-term
control of blood pressure. Am J Physiol Regul Integr Comp Physiol.
2005;288:R819-827.
Tomasetti M, Littarru GP, Stocker R, Alleva R. Coenzyme Q10
enrichment decreases oxidative DNA damage in human lymphocytes.
Free Radic Biol Med. 1999;27:1027-1032.
Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox
signaling in hypertension: What is the clinical significance? Hypertension.
2004;44:248-252.
Touyz RM, Schiffrin EL. Peroxisome proliferator-activated receptors in
vascular biology-molecular mechanisms and clinical implications. Vascul
Pharmacol. 2006;45:19-28.
Tsai YS, Kim HJ, Takahashi N, Kim HS, Hagaman JR, Kim JK, Maeda
N. Hypertension and abnormal fat distribution but not insulin resistance
in mice with P465L PPAR. J Clin Invest. 2004;114:240-249.
Tureyen K, Kapadia R, Bowen KK, Satriotomo I, Liang J, Feinstein DL,
Vemuganti R. Peroxisome proliferator-activated receptor-γ agonists
induce neuroprotection following transient focal ischemia in
normotensive, normoglycemic as well as hypertensive and type-2 diabetic
rodents. J Neurochem. 2007;101:41-56.
Turrens JF. Superoxide production by the mitochondrial respiratory chain.
Biosci Rep. 1997;17:3-8.
Vaziri ND, Lin CY, Farmand F, Sindhu RK. Superoxide dismutase,
catalase, glutathione peroxidase and NADPH oxidase in lead-induced
hypertension. Kidney Int. 2003;63:186-194.
Vidal-Puig AJ. Uncoupling expectations. Nat Genet. 2000;26:387-388.
Villarroya F, Iglesias R, Giralt M. PPARs in the control of uncoupling
proteins gene expression. PPAR Res. 2007;2007:74364.
Villegas I, MartÍn AR, Toma W, de la Lastra CA. Rosiglitazone, an
agonist of peroxisome proliferator-activated receptor γ, protects against
gastric ischemia-reperfusion damage in rats: Role of oxygen free radicals
generation. Eur J Pharmacol. 2004;505:195-203.
Walker AB, Naderali EK, Chattington PD, Buckingham RE, Williams G.
Differential vasoactive effects of the insulin sensitizers rosiglitazone
(BRL 49653) and troglitazone on human small arteries in vitro. Diabetes.1998;47:810-814.
Willette RN, Punnen S, Krieger AJ, Sapru HN. Interdependence of rostral
and caudal ventrolateral medullary areas in the control of blood pressure.
Brain Res. 1984;321:169-174.
Willette RN, Punnen-Grandy S, Krieger AJ, Sapru HN. Differential
regulation of regional vascular resistance by the rostral and caudal
ventrolateral medulla in the rat. J Auton Nerv Syst. 1987;18:143-151.
Wu L, Wang R, De Champlain J, Wilson TW. Beneficial and deleterious
effects of rosiglitazone on hypertension development in spontaneously
hypertensive rats. Am J Hypertens. 2004;17:749-756.
Yang CH, Shyr MH, Kuo TBJ, Tan PPC, Chen SHH. Effects of propofol
on nociceptive response and power spectra of electroencephalographic
and systemic arterial pressure signals in the rat: correlation with plasma
concentration. J Pharmacol Exp Ther. 1995;275:1568-1574.
Yosefy C, Magen E, Kiselevich A, Priluk R, London D, Volchek L,
Viskoper RJ Jr. Rosiglitazone improves, while Glibenclamide worsens
blood pressure control in treated hypertensive diabetic and dyslipidemic
subjects via modulation of insulin resistance and sympathetic activity. J
Cardiovasc Pharmacol. 2004;44:215–222.
Yoshitomi H, Yamazaki K, Abe S, Tanaka I. Differential regulation of
mouse uncoupling proteins among brown adipose tissue, white adipose
tissue, and skeletal muscle in chronic β3 adrenergic receptor agonist
treatment. Biochem Biophys Res Commun. 1998;253:85-91.
Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH,
Pan G. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 2000;14:1611-1618.
Zanzinger J. Mechanisms of action of nitric oxide in the brain stem: Role of oxidative stress. Auton Neurosci. 2002;98:24-27.
Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95:210-216.
Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 2002;91:1038-1045.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code