Responsive image
博碩士論文 etd-0730109-152407 詳細資訊
Title page for etd-0730109-152407
論文名稱
Title
雙光束光源對染料敏化太陽能電池之協同效應
Cooperative Effect of Double Beam Light Sources on the Dye Sensitized Solar Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-07-30
關鍵字
Keywords
染料敏化太陽能電池、協同效應
Cooperative Effect, Dye Sensitized Solar Cell
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
在半導體物理理論上,增加半導體電子電洞的數目,意味著增加了半導體之導電度,本實驗利用半導體吸收特定能量之波長的光會產生電子電洞分離的特性,利用此一特性應用於染料敏化太陽能電池上,研究該機制對染料敏化太陽能電池之影響。
實驗中,以3種不同波長的單色光(365nm,405nm及437nm)分別照射以及搭配氙燈光源照射的兩種照射方式,發現以波長為437nm的單色光單獨照射於染料敏化太陽能電池之光電轉換率為100﹪的前提下,單獨照射波長為365nm的染料敏化太陽能電池之光電轉換率僅為28﹪,但是搭配上氙燈光源照射時光電轉換率卻增為56﹪。推測此現象是因為光度較強的氙燈光源,使染料激發出比僅用365nm單色光更多電子,這些電子去填補照射365nm的單色光所產生出來之電洞,使得光電轉換率增高﹔另一方面,經過365nm的單色光加上氙燈照射產生的淨電流比原本只用氙燈照射電流高出6﹪,此現象暗示著雖然照射365nm的單色光產生的電洞會妨礙電流的輸出,但是照射365nm的單色光也會改變半導體之導電度。故研究顯示,導電度效應強過於電洞之效應。
Abstract
Semiconductors absorb photos with energy greater than their band gap energy may induce electron-hole pairs. In semiconductor physics, increasing charge carrier improves the electric conductivity of semiconductor. The following methodology was taken to investigate the electric conductivity and the electron hole pairs affected performance of a dye sensitized solar cell.
I applied 3 specific monochromatic light (365nm, 405nm and 437nm, respectively.) mixed with xenon light and normal xenon light separately illuminating on dye sensitized solar cells. At the assumption of the normalized photon to current conversion efficiency of solar cell illuminated by 437nm monochromatic light is 100%, the normalized photon to current conversion efficiency of the solar cell illuminated by 365nm monochromatic light was only 28%, however, that illuminated by 365nm monochromatic light mixed xenon light raised to 58%. The more intense mixed light produced more excited electrons than only 365nm monochromatic light. The holes generated by 365nm monochromatic light is easier to be captured by the electrons in the more intense mixed xenon light irradiation results in higher photon to current conversion efficiency. The output of photocurrent of the dye sensitized solar cell irradiated by 365nm ultraviolet light mixed xenon light was enhanced most significantly by 6.53% compared with that by normal xenon light irradiation.
目次 Table of Contents
Contents:
Abstract…...……………………………………………..………………III
List of figures…………...……………………………….……………...VI
List of tables …………………..………………………….……..........VIII
Abbreviations…………………………………………….……….…….IX
Chapter 1 Introduction:
1-1. Introduction………………………………………..……………...1
1-2. Structure of dssc…………………………………………..………4
1-3. Working mechanism of DSSC……………………………………5
1-4: Characterization of Solar cell …………………………………….7
1-5. Semiconductors …………………………………………………11
1-6. Electron transport model ………………………………………..15
1-7. Objective and motivation………………………………………..16
1-8. Titanium dioxide ………………………………………………..17
Chapter 2. Experimental methods…………………...……………….....19
2-1. Materials…………………………………………………………20
2-2. Synthesis of the sensitizer……………………………………….24
2-3. Measurement methods …………………………………………..28
2-4. Experimental section ……………………………………………30

Chapter 3. Result and discussion…………………………………...…...34
3-1. Irradiation only by monochromatic light………………………..34
3-2. Cooperative Irradiation....………………………………...……..39
Chapter 4.Conclusions………………………………….………...….….50
Chapter 5.Reference…………………………………….……...….……56
Chapter 6.Appendix…………………………………….……….………58

參考文獻 References
Reference:
[1] P. Liska, N. Vlachopoulos, M. K. Nazeeruddin, P. Comte and M. Gratzel, Journal of the American Chemical Society 1988, 110, 3686-3687.
[2] Y. J. Hou, P. H. Xie, B. W. Zhang, Y. Cao, X. R. Xiao and W. B. Wang, Inorganic Chemistry 1999, 38, 6320-+.
[3] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Gratzel, Inorganic Chemistry 1999, 38, 6298-6305.
[4] S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humphry-Baker and M. Gratzel, Inorganica Chimica Acta 1999, 296, 250-253.
[5] M. K. Nazeeruddin, Q. Wang, L. Cevey, V. Aranyos, P. Liska, E. Figgemeier, C. Klein, N. Hirata, S. Koops, S. A. Haque, J. R. Durrant, A. Hagfeldt, A. B. P. Lever and M. Gratzel, Inorganic Chemistry 2006, 45, 787-797.
[6] E. Mills, Environmental Science & Technology 2009, 43, 979-985.
[7] D. H. Lee and D. J. Lee, Energy & Fuels 2008, 22, 177-181.
[8] E. Wayman, Geotimes 2007, 52, 19-19.
[9] Z. Kowalik, Oceanologia 2004, 46, 291-331.
[10] Professional Engineering 1999, 12, 52-52.
[11] R. R. Gottfried, Social and Economic Studies 1987, 36, 177-202.
[12] G. V. Groves, Planetary and Space Science 1983, 31, 1183-1186.
[13] Nature 1974, 249, 681-681.
[14] P. Denholm, G. L. Kulcinski and T. Holloway, Environmental Science & Technology 2005, 39, 1903-1911.
[15] C. R. Palmgren, M. G. Morgan, W. B. De Bruin and D. W. Keith, Environmental Science & Technology 2004, 38, 6441-6450.
[16] M. J. Khan and M. T. Iqbal, Applied Energy 2009, 86, 2429-2442.
[17] M. Cellura, G. Cirrincione, A. Marvuglia and A. Miraoui, Renewable Energy 2008, 33, 1251-1266.
[18] T. P. Otanicar, P. E. Phelan and J. S. Golden, Solar Energy 2009, 83, 969-977.
[19] A. Turley, Chemistry & Industry 2009, 6-6.
[20] N. Eisberg, Chemistry & Industry 2009, 12-12.
[21] A. A. Mak, I. M. Belousova, V. M. Kiselev, A. S. Grenishin, O. B. Danilov and E. N. Sosnov, Journal of Optical Technology 2009, 76, 172-186.
[22] A. Prest and H. Grassmann, Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics 2008, 31, 557-566.
[23] H. G. Jin, H. Hong, J. Sui and Q. B. Liu, Science in China Series E-Technological Sciences 2009, 52, 1135-1152.
[24] A. Cleve, O. Volk, J. Hinkelmann and A. Fischer, Wiener Klinische Wochenschrift 2009, 121, A5-A5.
[25] E. Boralv, B. Goransson, E. Olsson and B. Sandblad, Computer Methods and Programs in Biomedicine 1994, 45, S139-S145.
[26] M. Gratzel, Nature 2003, 421, 586-587.
[27] M. Gratzel, Nature 2001, 414, 338-344.
[28] G. P. Smestad and M. Gratzel, Journal of Chemical Education 1998, 75, 752-756.
[29] F. H. Case, Journal of the American Chemical Society 1946.
[30] T. Rawling, F. Buchholz and A. M. McDonagh, Australian Journal of Chemistry 2008, 61, 405-408.
[31] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. K. Wang, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society 2009, 131, 558-562.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.159.224
論文開放下載的時間是 校外不公開

Your IP address is 3.133.159.224
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code