Responsive image
博碩士論文 etd-0730111-113324 詳細資訊
Title page for etd-0730111-113324
論文名稱
Title
美文松作用於大白鼠杏仁核引發癲癇與降低血壓
Mevinphos Induces Seizure-like EEG Activity and Decreases Blood Pressure by an Action on Amygdala
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-20
繳交日期
Date of Submission
2011-07-30
關鍵字
Keywords
美文松、癲癇、心血管反應、發炎反應、細胞凋亡、杏仁核
Apoptosis, Amygdala, Mevinphos, Inflammation, Cardiovascular Response, Seizure
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
有機磷美文松 (mevinphos, Mev) 為台灣常見自殺用的農藥,有機磷中毒病患會出現癲癇與心血管反應低落的病癥。杏仁核 (amygdala, AMG) 為邊緣系統的核區之一,基底外側杏仁核 (basolateral nucleus of amygdala, BLA) 被認為和癲癇調控相關,而中央杏仁核 (cetral nucleus of amygdala, CeA) 被認為參與在行為和情緒反應以及心血管的調控,然而未有詳細的機制探討於有機磷中毒所引起的癲癇和心血管反應低落中杏仁核是否參與。以腦電波觀測腦神經活性及以血壓和心跳變化觀測心血管反應,本實驗欲探討有機磷 Mev 作用於杏仁核是否會誘發癲癇的發生與心血管反應的低落。
利用微量注射 Mev 至以 propofol 維持持續麻醉狀態之大白鼠基底外側杏仁核引起杏仁核、皮質與海馬迴腦電波功率增加,誘發癲癇的產生,但對於動脈壓、心跳、呼吸和動脈壓低頻功\率成份並無顯著影響,且會造成杏仁核中細胞激素 interleukin (IL)-12、 IL-13、 tumor suppressor factor alpha (TNFα)、 interferon gamma ( IFNγ) 蛋白質與 mRNA 含量及環氧合酶活性隨著時間顯著增加。微量注射 Mev 至海馬迴僅誘發較輕微之皮質和海馬迴癲癇狀腦電波活性,無法於杏仁核中誘發腦電波變化。顯示大鼠 Mev 作用於基底外側杏仁核,可參與癲癇的發生並擴散至其他邊緣系統核區及大腦皮質中。腹腔注射可通過血腦屏障之蕈毒鹼接受器拮抗劑 atropine (ATR)、促進 GABA 抑制型神經傳導藥物 midazolam (MDZ)、抗發炎藥物 pentoxifylline (PTX) 和 Lisofylline (LSF) 而非不可通過血腦屏障之蕈毒鹼接受器拮抗劑 atropine methyl nitrate (AMN) 可抑制由 Mev 作用於基底外側杏仁核誘發的癲癇發生並抑制杏仁核中細胞激素的增加。微量注射 ATR、環氧合酶第一亞型抑制劑 naproxen (NPX) 和環氧合酶第二亞型抑制劑 NS398、及 IL-12、 IL-13、 TNFα、 IFNγ 接受器之抗血清而非尼古丁接受器拮抗劑 mecamylamine (MEL) 至基底外側杏仁核,可抑制由 Mev 作用於基底外側杏仁核造成的杏仁核中細胞激素蛋白質含量與環氧合酶活性的增加,並抑制杏仁核中所偵測到的發炎反應及癲癇的發生。然而 Mev 作用於基底外側杏仁核,並未於杏仁核中偵測到 caspase 3活性的增加及 DNA 斷裂的產生,顯示當 Mev 作用於基底外側杏仁核誘發癲癇的過程中並未產生細胞凋亡。
利用微量注射 Mev 至中央杏仁核導致動脈壓及呼吸速率下降,造成心血管反應低落,且會造成動脈壓低頻成分的短暫上升而心跳速率無顯著變化,但對於杏仁核腦電波變化無顯著影響。微量注射 Mev 至中央杏仁核使得杏仁核中caspase 3 活性的增加及 DNA 斷裂的產生,造成細胞凋亡。微量注射 ATR、細胞凋亡抑制劑 NS-3694 而非 MEL 至中央杏仁核可抑制由 Mev 作用於中央杏仁核所產生之心血管反應低落及杏仁核中 caspase 3 活性的增加及 DNA 斷裂的產生。然而於杏仁核中並未偵測到細胞激素蛋白質含量的改變,顯現 Mev 作用於中央杏仁核造成心血管反應低落並非由發炎反應所媒介。
利用靜脈注射 Mev 並未改變杏仁核組織中氧分壓與血流速度,且未於杏仁核中偵測到超氧陰離子之含量變化或超氧陰離子之螢光訊號。微量注射 Mev 至基底外側杏仁核或中央杏仁核中亦無觀測到杏仁核中超氧陰離子含量的變化,顯現超氧陰離子並未參與在 Mev 作用於基底外側杏仁核造成的癲癇或 Mev 作用於中央杏仁核造成的心血管反應低落過程中。
由實驗結果可得知杏仁核參與在有機磷 Mev 中毒大鼠中癲癇的發生與心血管反應低落的調控,此外基底外側杏仁核的發炎反應與中央杏仁核的細胞凋亡將於癲癇發生與心血管反應低落中各自扮演重要的角色。
Abstract
Mevinphos (Mev) is an orgnophosphate insectide used for suicidal purposes in Taiwan; seizure and cardiovascular depression are commom syptoms observed in organophosphate-poisoned patients. The amygdala (AMG) is part of the limbic system and the basolateral nucleus of AMG (BLA) is one of the most seizure-prone brain structures. The central neucleus of AMG (CeA) is thought to play a central role in behavioral, physiological response and cardiovascular regulation. However, detailed mechanisms in Mev-induced seizure and cardiovascular depression by an action on AMG are lacking. Based on electroencephalographic (EEG) activity to indicate neuronal electrical activity and arterial blood pressure (AP) and heart rate (HR) to indicate cardiovascular responses, the present study investigated whether Mev acts on AMG to elicit seizure or cardiovascular depression.
Microinjection of Mev into BLA of adult male Sprague-Dawley (SD) rats maintained under propofol anesthesia increased EEG activity in AMG, cortex and CA3 of hippocampus leading to seizure initiation; however AP, HR, respiration rate (RR) and the power density of low-frequency (LF) component of AP was not significantly changed. Microinjection of Mev into BLA also time-dependently increased protein level and mRNA of cytokines interleukin (IL)-12, IL-13, tumor suppressor factor alpha (TNFα) and interferon gamma (IFNγ) and cyclooxygenase (COX) activity in AMG. Microinjection of Mev into CA3 induced less seizure activity in cortex and CA3 than that induced by microinjection of Mev into BLA. In addition, microinjection Mev into CA3 did not induce seizure in AMG. These results suggest that Mev acted on BLA to initiate limbic seizures. Intraperitoneal injection of muscarinic receptor antagonist atropine (ATR), which can pass the blood-brain barrier (BBB), activator of GABAergic neurotransmission midazolam (MDZ) or antiinflaamatory agent pentoxifylline (PTX) and Lisofylline (LSF), but not muscarinic receptor antagonist atropine methyl nitrate (AMN), which can not pass BBB, inhibited Mev-induced seizure and increase of cytokines in AMG by an action on BLA. Microinjection of ATR, COX-1 inhibitor naproxen (NPX) or COX-2 inhibitor NS-398, antiserum against receptor of IL-12, IL-13, TNFα or IFNγ, but not nicotinic receptor antagonist mecamylamine (MEL), into BLA inhibited Mev-induced seizure and increase of cytokines and COX activity in AMG by an action on BLA. However, caspase 3 activity and DNA fragmentation at AMG were not changed by microinjection of Mev into BLA.
Microinjection of Mev into CeA induced a decrease in AP and RR leading to cardiovascular depression and an increase of power desity of LF, accompanied with insignificant HR and EEG activity change. Microinjection of Mev into CeA induced the time-dependently increase of caspase 3 activity and DNA fragmentation leading to apoptosis in AMG. Microinjection of ATR or caspase 3-dependent apoptosome inhibitor NS-3694, but not MEL, into CeA inhibited cardiovascular depression and the increase of caspase 3 activity and DNA fragmentation induced by Mev action on CeA. However, the levels of cytokines were not changed by Mev treatment.
Intravenous injection of Mev did not induce changes of partial pressure of oxygen, blood flow and the level of superoxide anion in AMG. In addition, microinjection of Mev into BLA or CeA did not affect the level of superoxide anion in AMG.
These results suggest that AMG mediates the initiation of seizure and cardiovascular depression induced by Mev. Furthermore, inflammation in BLA and apoptosis in CeA individually play an important role in Mev-induced seizure and cardiovascular depression.
目次 Table of Contents
論文審定書 i
致謝 iii
中文摘要 v
英文摘要 vii
第一章 緒論 Introduction 1
一、 Mev 中毒之作用機轉與對中樞神經系統和心血管變化之影響 2
二、 基底外側杏仁核與中央杏仁核對於癲癇及心血管之調控 3
三、 乙醯膽鹼系統之蕈毒鹼及尼古丁接受器對於癲癇及心血管之調控 5
四、 發炎反應對於癲癇及心血管之調控 7
五、 細胞凋亡對於癲癇及心血管之調控 9
六、 氧化壓力對於發炎反應與細胞凋亡之調控 11
七、 腦電波頻譜分析 12
八、 動脈壓頻譜分析 13
第二章 研究動機與目的 Motivation and Research Objectives 15
第三章 研究材料與方法 Materials and Methods 19
一、 動物準備 20
二、 動脈壓之血壓、心跳與頻譜分析 20
三、 微量注射或腹腔注射化學物質 21
四、 記錄腦電波及腦電波頻譜分析 22
五、 實驗流程 22
六、 腦部組織切片與 Hemotoxyline and eosin 染色 23
七、 免疫螢光染色 23
八、 動物全身灌流以及組織取樣 23
九、 蛋白質萃取 24
十、 核醣核酸萃取 24
十一、反轉錄聚合酶鏈式反應 24
十二、即時定量聚合酶鏈式反應 24
十三、發炎反應之檢測 25
十四、細胞凋亡之檢測 25
十五、超氧陰離子之檢測 26
十六、統計分析 26
十七、藥品及抗體來源 27
第四章 實驗結果 Results 29
一、 靜脈注射 Mev,觀測 Ctx 與 AMG 之 EEG 改變與心血管反應 30
二、 微量注射 Mev 於 AMG 和 CA3,觀測 EEG 改變與心血管反應 30
三、 於 Mev 中毒大鼠癲癇模式給予 ATR、 AMN 和 MDZ 31
四、 探討 BLA 中 AChR 於 Mev 中毒大鼠癲癇模式所扮演的角色 32
五、 Mev 中毒大鼠癲癇模式下 BLA 中發炎反應與細胞凋亡是否參與 32
六、 探討 BLA 中發炎反應於 Mev 中毒大鼠癲癇模式所扮演的角色 33
七、 探討 CeA 中 AChR 於 Mev 中毒大鼠心血管反應低落所扮演的角色 35
八、 Mev 中毒大鼠心血管反應低落 CeA 中發炎反應與細胞凋亡是否參與 36
九、 探討 CeA 中細胞凋亡於 Mev 中毒大鼠心血管反應低落中所扮演的角色 36
十、 Mev 中毒大鼠癲癇模式下 AMG 中氧化壓力是否參與 37
第五章 討論 Discussion 39
一、 建立 Mev 中毒大鼠癲癇模式 40
二、 BLA 中 mAChR 而非 nAChR 參與 Mev 中毒大鼠癲癇模式與心血管低落反應 41
三、 Mev 中毒誘發大鼠癲癇由 BLA 中發炎反應而非細胞凋亡所媒介 42
四、 Mev 中毒誘發大鼠心血管反應低落由 CeA 中細胞凋亡而非發炎反應所媒介 43
五、 AMG 中氧化壓力於 Mev 中毒大鼠癲癇模式中所扮演的角色 43
第六章 結論 Conclusion 45
第七章 未來展望 Future Prospect 47
參考文獻 References 49
參考文獻 References
Akselrod S, 1988. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci. 9(1):6-9.
Akselrod S, Eliash S, Oz O, Cohen S, 1987. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 253(1 Pt 2):H176-83.
Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ, 1985. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 249(4 Pt 2):H867-75.
Akula KK, Dhir A, Kulkarni SK, 2008. Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: possible involvement of adenosinergic mechanism. Epilepsy Res. 78(1):60-70.
Allan SM, Rothwell NJ, 2001. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2(10):734-44.
Allan SM, Rothwell NJ, 2003. Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci. 358(1438):1669-77.
Annamaria V, 2005. Inflammation and Epilepsy. Epilepsy Curr. 5(1):1-6.
Aslan N, Goren Z, Ozkutlu U, Onat F, Oktay S, 1997a. Modulation of the pressor response elicited by carbachol and electrical stimulation of the amygdala by muscarinic antagonist in conscious rats. Br J Pharmacol. 121(1):35-40.
Aslan N, Goren Z, Ozkutlu U, Onat F, Oktay S, 1997b. Carbachol-induced pressor responses and muscarinic M1 receptors in the central nucleus of amygdala in conscious rats. Eur J Pharmacol. 333(1):63-67.
Bardin PG, Van Eeden SF, 1990. Organophosphate poisoning: grading the severity and comparing treatment between atropine and glycopyrrolate. Crit Care Med. 18(9): 956-960.
Bengzon J, Mohapel P, Ekdahl CT, Lindvall O, 2002. Neuronal apoptosis after brief and prolonged seizures. Prog Brain Res. 135:111-9.
Birdsall A, Sannajust F, Yoccoz D, Blanchet G, Sentenac-Roumanou H, Sassard J, 1990. Cardiovascular consequences of organophosphorus poisoning and of antidotes in conscious unrestrained rats. Pharm & Toxicol. 67(1):27-35.
Browne SE, Ferrante RJ, Beal MF, 1999. Oxidative stress in Huntington's disease. Brain Pathol. 9(1):147-63.
Caulfield MP, 1993. Muscarinic receptors-characterization, coupling and function. Pharmacol Ther. 58(3):319-379.
Cerutti C, Gustin MP, Paultre CZ, Lo M, Julien C, Vincent M, Sassard J, 1991. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol. 261(4 Pt 2):H1292-9.
Chan JYH, Chang AYW, Chan SHH, 2005. New insights on brain stem death: from bedside to bench. Prog Neurobiol. 77(6):396-425.
Chan JYH, Cheng HL, Chou JLJ, Li FCH, Dai KY, Chan SHH, Chang AYW, 2007. Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. J Biol Chem. 282(7):4585-600.
Chan SHH, Wang LL, Ou CC, Chan JYH, 2002. Contribution of peroxynitrite to fatal cardiovascular depression induced by overproduction of nitric oxide in rostral ventrolateral medulla of the rat. Neuropharmacology. 43(5):889-98.
Chang AYW, Chan JYH, Cheng HL, Tsai CY, Chan SHH, 2009. Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock. 32(6):651-8.5Chiang PH, Wang L, Liang Y, Liang X, Qian S, Fung JJ, Bonham CA, Lu L, 2002. Inhibition of IL-12 signaling Stat4/IFN-gamma pathway by rapamycin is associated with impaired dendritic [correction of dendritc] cell function. Transplant Proc. 34(5):1394-5.
Chuang FR, Jang SW, Lin JL, Chern MS, Chen JB, Hsu KT, 1996. QTc prolongation indicates a poor prognosis in patients with organophosphate poisoning. Am J Emerg Med. 14(5):451-453.
Chuang YC, Chen SD, Lin TK, Liou CW, Chang WN, Chan SHH, Chang AYW, 2007. Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology. 52(5):1263-73.
Conci F, Di Rienzo M, Castiglioni P, 2001. Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. J Neurol Neurosurg Psychiatry. 71(5):621-31.
Davis M, 1992. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 15: 353-375.
Dille JR, Smith PW, 1964. Central nervous system effects of chronic exposure to organophosphate insecticides. Aerospace Med. 35:475-478.
Dobelis P, Hutton S, Lu Y, Collins AC, 2003. GABAergic systems modulate nicotinic receptor-mediated seizures in mice. J Pharmacol Exp Ther. 306(3):1159-66.
Donegan JH, Rampil IJ, 1990. The electroencephalogram. Monitoring in Anesthesia and Critical Care Medicine. Blitt, C.D. (Ed.), Churchill Livingstone, New York, 431-459.
Dunn MA, Sidell FR, 1989. Progress in medical defense against nerve agents. JAMA. 262(5):649-52.
Eglen RM, Reddy H, Waston N, 1994. Selective inactivation of muscarinic receptor subtypes. Int J Biochem. 26(12):1357-1368.
Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G, 2008. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 14(12):1377-83.
Fesik SW, Shi Y, 2001. Controlling the caspases. Science. 294(5546):1477-8.
Forster JS, Ballough BP, Filbert MG, 1999. Residual acetylcholinesterase activity in the basal lateral amygdala following soman-induced status epilepsy. Toxicol Mech Methods. 9:115-124.
Galeno TM and Broody MJ, 1983. Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats. Am J Physiol. 245, R281-286.
Galeno TM, Hoesen GW, and Brody MJ, 1984. Central amygdaloid nucleus lesion attenuates exaggreted hemodynamic responses to noise stress in the spontaneously hypertensive rat. Brain Res. 291(2):249-259.
Gelsema AJ, McKitrick DJ, Calaresu FR, 1987. Cardiovascular responses to chemical and electrical stimulation of amygdala in rats. Am J Physiol. 253(5 Pt 2):R712-8.
George P, Adam DC, Mark AS, 2002. Alzheimer Disease and Oxidative Stress. J Biomed Biotechnol. 2(3): 120-123.
Graham A, Court JA, Martin-Ruiz CM, Jaros E, Perry R, Volsen SG, Bose S, Evans N, Ince P, Kuryatov A, Lindstrom J, Gotti C, Perry EK, 2002. Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neuroscience. 113(3):493-507.
Henshall DC, Simon RP, 2005. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab. 25(12):1557-72.
Hilton SM and Zbrozyna AW, 1963. Amygdaloid region for defense reactions and its efferent pathway to the brain stem. J Physiol. 165:160-173.
Hoffman W, Grundy B, 1990. Physiology of the Electroencephalogram. Scientific Foundations of Anesthesia. Scurr, C. and Feldman, S. (Eds.), Year Book Medical Publishers, Chicago, 325-349.
Homma I, Masaoka Y, 2008. Breathing rhythms and emotions. Exp Physiol. 93(9):1011-21.
Hosey MM, 1993. Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receotors. FASEB. J. 6, 845-852.
Hulme EC, Birdall NJM, Buckley NJ, 1990. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 30:633-673.
Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T, Akatsu T, 1991. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans. Am J Physiol. 260(3 Pt 2):H842-7.
Ischiropoulos H, Al-Mehdi AB, 1995. Peroxynitrite-mediated oxidative protein modifications. FEBS lett. 364:279-282.
Jamal G, 1997. Adverse Drug React Toxicol Rev. Neurological syndromes of organophosphorus compounds. 16:133-70.
Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL, 1990. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 30(2):91-100.
Jenner P, 2003. Oxidative stress in Parkinson's disease. Ann Neurol. 53 Suppl 3:S26-36; discussion S36-8.
Johnson EA, Kan RK, 2010. The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations. J Neuroinflammation. 7:40.
Kishi T, Hirooka Y, Ito K, Shimokawa H, Takeshita A, 2004. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanism of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 109(19):2357-2362.
Kleen JK, Holmes GL, 2008. Brain inflammation initiates seizures. Nat Med. 14(12):1309-10.
Kuno R, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A, 2005. Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol. 162(1-2):89-96.
Kuo TBJ, Yang CCH, Chan SHH, 1997. Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol. 272(1 Pt 2):H485-92.
Lallament G, Carpentier P, Collet A, Baubichon D, Pernot-Matino I, Blanchet G, 1992. Extracellular acetylcholine changes in rat limbic structures during soman-induced seizures. Neurotoxicology. 13(3):557-568.
Lallement G, Carpentier P, Collet A, Pernot-Marino I, Baubichon D, Sentenac-Roumanou H, Blanchet G, 1991. Involvement of glutamatergic system of amygdala in generalized seizures induced by soman: comparison with the hippocampus. C R Acad Sci III. 313(9):421-6.
Lallement G, Dorandeu F, Filliat P, Carpentier P, Baille V, Blanchet G, 1998. Medical management of organophosphate-induced seizures. J Physiol Paris. 92(5-6):369-73.
LeDoux J, 1998. Fear and the brain: where have we been, and where are we going? Biol Psychiatry. 44(12):1229-1238.
Ledoux JE, 2000. Emotion circuit in the brain. Annu Rev Neurosci. 23:155-184.
Leutner S, Eckert A, Muller WE, 2001. ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm. 108(8-9):955-67.
Levin ED, 2002. Nicotinic receptor subtypes and cognitive function. J Neurobiol. 53(4):633-640.
Li PL, Chao YM, Chan SHH, Chan JYH, 2001. Potentiation of baroreceptor reflex response by heat shock protein 70 in nucleus tractus solitarii confers cardiovascular protection during heatstroke. Circulation. 103(16):2114-9.
Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X, 2010. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci. 101(5):1226-33.
Libby P, 2006. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 83(2):456S-460S.
Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RD, Passos GF, Calixto JB, 2010. The role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-amyloid peptide. Behav Brain Res. 209(1):165-73.
Michel CM, Lehmann D, Henggeler B, Brandeleis D, 1991. Localization of the sources of EEG delta, theta, alpha, beta frequency bands using the FFT diploe approximation. Electroencephal Clin Neurophysiol. 82(1):38-44.
Murugaian J, Sundaram K, Sapru H, 1989. Cholinergic mechanisms in the ventrolateral medullary depressor area. Brain Res. 501(2):355-63.
Muthian G, Raikwar HP, Johnson C, Rajasingh J, Kalgutkar A, Marnett LJ, Bright JJ, 2006. COX-2 inhibitors modulate IL-12 signaling through JAK-STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol. 26(1):73-85.
Ohta H, Watanabe S, Ueki S, 1991. Cardiovascular changes induced by chemical stimulation of amygdala in rats. Brain Res. Bull. 26(4):575-581.
Orrin Devinsky MD, 2004. Effects of Seizures on Autonomic and Cardiovascular Function. Epilepsy Curr. 4(2):43-46.
Ozkutlu U, Coskun T, Onat F, Yemen BC and Oktay S, 1995. Cardiovascular effects of centrally active cholinomimetics in conscious and anesthetized rats: The role of amygdala. Brain Res Bull. 37(6):569-573.
Pagani M, Rimoldi O, Pizzinelli P, Furlan R, Crivellaro W, Liberati D, Cerutti S, Malliani A, 1991. Assessment of the neural control of the circulation during psychological stress. J Auton Nerv Syst. 35(1):33-41.
Perry VH, 2004. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun. 18(5):407-13.
Rao RS, Medhi B, Khanduja KL, Pandhi P, 2010. Correlation of seizures and biochemical parameters of oxidative stress in experimentally induced inflammatory rat models. Fundam Clin Pharmacol. 24(3):325-31.
Rebecca CK, Jerrel LY, 2002. Functional somato-dendritic α7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex. J Physiol. 576(Pt 3):865-872.
Revzin AM, 1973. Subtle changes in brain functions produced by single doses of mevinphos (Phosdrin). FAA Office of Aviation Medicine Report No. AM-73-3.
Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A, 1990. Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol. 258(4 Pt 2):H967-76.
Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G, 1987. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 10(5):538-43.
Rogers RC and Fryman DL, 1988. Direct connections between the central nucleus of the amygdala and the nucleus of the solitary tract: an electrophysiological study in the rat. J Auton Nerv Syst. 22(1):83–87.
Schwaber JS, Kapp BS, Higgins GA, Rapp PR, 1982. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and dorsal motor nucleus. J Neurosci. 2(10):1424-1438.
Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E, 2003. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 988(1-2):193-198.
Shih TM, 1982. Time course effects of soman on acetylcholine and choline levels in six discrete areas of the rat brain. Psychopharmacology 78(2):170-175.
Shih TM, Duniho SM, McDonough JH, 2003. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol. 188(2):69-80.
Shih TM, Rowland TC, McDonough JH, 2007. Anticonvulsants for nerve agent-induced seizures: The influence of the therapeutic dose of atropine. J Pharmacol Exp Ther. 20(1):154-61.
Shishodia S, Koul D, Aggarwal BB, 2004. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol. 173(3):2011-22.
Stock G, Rupprecht U, Stumpf H, Schlor KH, 1981. Cardiovascular changes during arousal elicited by stimulation of amygdala, hypothalamus and locus coeruleus. J Auton Nerv Syst. 3(2-4):503-510.
Stock G, Schlor KH, Heidt H, Buss J, 1978. Psychomotor behaviour and cardiovascular patterns during stimulation of the amygdala. Pflugers Arch. 376(2):177-184.
Sundaram K, Krieger AJ, Sapru H, 1988. M2 muscarinic receptors mediate pressor responses to cholinergic agonists in the ventrolateral medullary pressor area. Brain Res. 449(1-2):141-9.
Tabershaw IR, Cooper WC, 1966. Sequelae of acute organic phosphate poisoning. J Occup. 8(1):5-20.
Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY, 1998. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol. 30(9):1789-801.
Van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE, 1984. The organization of projections from the cortex, amygdala and hypothalamus to the nucleus of the solitary tract in rat. J comp Neurol. 224(1):1-24.
Van der Meide PH, Schellekens H, 1996. Cytokines and the immune response. Biotherapy. 8(3-4):243-9.
Veening JG, Swanson LW, Sawchenko PE, 1984. The organisation of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport–immunocytochemical study. Brain Res. 303(2):337-357.
Wakade AR, Wakade TD, 1983. Mechanism of negative feed-back inhibition of norepinephrine release by alpha-adrenergic agonists. Neuroscience 9(3):673-677.
Walker NI, Harmon BV, Gobe GC, Kerr JF, 1988. Patterns of cell death. Methods Achiev Exp Pathol. 13:18-54.
Wallace DM, Magnuson DJ, Gray TS, 1992. Organization of amygdaloid projections to brainstem dopaminergic noradrenergic and adrenergic cell groups in the rat. Brain Res Bull. 28(3):447-454.
Wasterlain CG, V. Jones, 1981. Cholinergic kindling of the amygdala requires the activation of muscarinic receptors. Exp Neurol. 73(2):595-599.
Watson M, Yamamura HI, Roeske WR, 1983. A unique regulatory profile and regional distribution of [3H]-pirenzepine in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes. Life Sci. 32(26):3001-3011.
Wen J, You KR, Lee SY, Song CH, Kim DG, 2002. Oxidative stress-mediated apoptosis. J Biol Chem. 277(41):38954-64.
Wess J, 1993. Mutational analysis of muscarinic acetylcholine receptors: structure basis of ligand/receptor/G-protein interactions. Life Sci. 53(19):1447-1463
White LE, Price JL, 1993. The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation. J Neurosci. 13(11):4810-30.
Xinyu DL, Jerry JB, 2004. Role of alpha7 nicotinic acetylcholine receptors in the pressor response to intracerebroventricular injection of choline: blockade by amyloid peptide Abeta1-42. J Pharmacol Exp Ther. 309(3):1206-12.
Yajeya J, De La FA, Criado JM, Bajo V, Sanchez-Riolobos A, Heredia M, 2000. Muscarinic agonist carbachol depresses excitatory synaptic transmission in the rat basolateral amygdala in vitro. Synapse. 38(2):151-160.
Yang CH, Shyr MH, Kuo TBJ, Tan PPC, Chan SHH, 1995b. Effects of propofol on nociceptive response and power spectra of electroencephalographic and systemic arterial pressure signals in the rat: correlation with plasma concentration. J Pharmacol Exp Ther. 275(3):1568-74.
Yang MW, Kuo TBJ, Lin SM, Chan KH, Chan SHH, 1995a. Continuous, on-line, real-time spectral analysis of SAP signals during cardiopulmonary bypass. Am J Physiol. 268(6 Pt 2):H2329-35.
Yen DHT, Yen JC. Len WB, Wang LM, Lee CH, Chan SHH, 2001. Spectral changes in systemic arterial pressure signals during acute mevinphos intoxication in the rat. Shock. 15(1):35-41.
Yien HW, Hseu SS, Lee LC, Kuo TBJ, Lee TY, Chan SHH, 1997. Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit. Crit Care Med. 25(2):258-66.
Yu CL, Huang MH, Kung YY, Tsai CY, Tsai YY, Tsai ST, Huang DF, Sun KH, Han SH, Yu HS, 1998. Interleukin-13 increases prostaglandin E2 (PGE2) production by normal human polymorphonuclear neutrophils by enhancing cyclooxygenase 2 (COX-2) gene expression. Inflamm Res. 47(4):167-73.
Zanzinger J, Czachurski J, 2000. Chronic oxidative stress in the RVLM modulate sympathetic control of circulation in pigs. Pfl`ugers Arch. 439(4):489-494.
Zhang J X, Harper RM., Ni H, 1986. Cryogenic blockade of the central nucleus of the amygdala attenuates aversively conditioned blood pressure and respiratory responses. Brain Res. 386(1-2):136-145.
Zhang ZQ, Liang R, Huang T, Yang HX, Peng W, Li F, Yin FR, Yi G, Wang CZ, 2003. Dynamic change of vascular active materials and inflammatory mediums after acute organophosphate poisoning and its clinical significance. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 15(12):762-3.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.206.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.206.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code