Responsive image
博碩士論文 etd-0730112-120420 詳細資訊
Title page for etd-0730112-120420
論文名稱
Title
量子圖上的正譜問題和反譜問題
Direct and Inverse Spectral Problems on Quantum Graphs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-29
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
量子圖、石墨烯、譜、Ambarzumyan 問題、譜反演問題
quantum graphs, inverse spectral problem, Ambarzumyan problem, spectrum, graphene
統計
Statistics
本論文已被瀏覽 5857 次,被下載 834
The thesis/dissertation has been browsed 5857 times, has been downloaded 834 times.
中文摘要
近日,在圖上的 Sturm-Liouville 問題 (即量子圖)
研究越來越熱門 。然而在環狀圖上的研究較少。
在本篇論文,我們首次考慮一個特徵方程 (稱 Floquet 方程) 在對於 Schrodinger 算子 H 作用在類似石墨烯圖上的譜分析,此類石墨烯圖由 3 條不同長度的鄰邊所組成的六邊形,而覆蓋成一平面。而算子讓不同邊長對應不同的 potential 函數。
我們應用 Floquet-Bloch 定理來推導出 Floquet 方程,其根即為所有 H 的譜值。
且我們證明此類石墨烯圖的譜是連續的。我們推廣了 Kuchment-Post 和 Korotyaev-Lobanov 的結果,而且我們的方法較簡單直接。
其次,我們研究兩個在圖上的 Ambarzumyan 問題,一個是在石墨烯上,另外一個則是在環狀圖形 (3 個邊和 2 端點) 上。
最後,我們解出一個在同一環狀圖上的 Hochstadt-Lieberman 型式的譜反演問題。
Abstract
Recently there is a lot of interest in the study of Sturm-Liouville problems on graphs,
called quantum graphs. However the study on cyclic quantum graphs are scarce. In
this thesis, we shall rst consider a characteristic function approach to the spectral
analysis for the Schrodinger operator H acting on graphene-like graphs|in nite periodic
hexagonal graphs with 3 distinct adjacent edges and 3 distinct potentials de ned
on them. We apply the Floquet-Bloch theory to derive a Floquet equation with parameters
theta_1, theta_2, whose roots de ne all the spectral values of H. Then we show that the
spectrum of this operator is continuous. Our results generalize those of Kuchment-Post
and Korotyaev-Lobanov. Our method is also simpler and more direct.
Next we solve two Ambarzumyan problems, one for graphene and another for a cyclic
graph with two vertices and 3 edges. Finally we solve an Hochstadt-Lieberman type
inverse spectral problem for the same cyclic graph with two vertices and 3 edges.
Keywords : quantum graphs, graphene, spectrum, Ambarzumyan problem, inverse
spectral problem.
目次 Table of Contents
1 Introduction 1
1.1 Quantum graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Graphene and nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 The spectrum of Schrodinger operator acting on graphene-like graphs 14
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Floquet equation for graphene-like graphs . . . . . . . . . . . . . . . . 19
2.3 Asymptotic behavior for the Floquet equation . . . . . . . . . . . . . . 22
2.4 Floquet equation for nanotube-like graphs . . . . . . . . . . . . . . . . 29
2.5 An Ambarzumyan problem for Dirichlet eigenvalues . . . . . . . . . . . 32
3 An Ambarzumyan problem on a cyclic quantum graph 36
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Expansion of characteristic functions . . . . . . . . . . . . . . . . . . . 40
4 An inverse spectral problem on a cyclic quantum graph 50
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Properties of the eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Proof of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 Appendix 60
5.1 Floquet-Bloch theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Analytically bered operators . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Properties of even potentials . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Bibliography 66
參考文獻 References
[1] A. Badanin, J. Bru‥ning, E. Korotyaev and I. Lobanov, Schr‥odinger operators on armchair nanotubes. I, http://arxiv.org/abs/0707.3909v1, (2007).
[2] A. Badanin, J. Bru‥ning and E. Korotyaev, Schr‥odinger operators on armchair nanotubes. II, http://arxiv.org/abs/0707.3900v1, (2007).
[3] A.V. Badanin and E. Korotyaev, A magnetic Schr‥odinger operator on a periodic graph, Sbornik: Mathematics, 201:10, (2010) 1403-1448.
[4] R. Carlson and V.N. Pivovarchik, Ambarzumian’s theorem for trees, Electronic J. Diff. Eqns., Vol.2007 (2007), no. 142, 1-9.
[5] T.H. Chang and C.T. Shieh, Uniqueness of the potential fucntion of the vecto- rial Sturm-Liouville equations with general boundary conditions, Boundary Value Problems, to appear.
[6] H.H. Chern, C.K. Law, and H.J. Wang, Extension of Ambarzumyan’s theorem to general boundary conditions, J. Math. Anal. Appl., 263, no.2, (2001) 333-342; Corrigendum, 309, no.2, (2005) 764-768.
[7] Y.H. Cheng, Reconstruction of the Sturm-Liouville operator on a p-star graph with nodal data, Rocky Mountain J. Math., to appear.
[8] E.B. Davies, Spectral theory and differential operators, Cambridge University Press, New York, (1995).
[9] E.B. Davies, An inverse spectral theorem, J. Operator Theory, to appear.
[10] M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Acad. Press Ltd., Edinburgh-London, (1973).
[11] A.K. Geim and K.S. Novoselov, The rise of graphene, Nature Materials, 6, (2007) 183-191.
[12] C. Gerard and F. Nier, The Mourre theory for analytically fibered operators, J.Funt. Anal., 152, (1998) 202-19.
[13] B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 34, (2001) 6061-6068.
[14] H. Hochstadt, The inverse Sturm-Liouville problem, Comm. Pure Appl. Math. 26 (1973) 715-729.
[15] P. Harris, Carbon Nano-tubes and Related Structures, Cambridge University Press, (2002).
[16] M. Horvath, Inverse spectral problems and closed exponential systems, Ann. Math., 162, (2005) 885-918.
[17] Y.C. Hung, C.K. Law and C.T. Shieh, Some Ambarzumyan problems for the Sturm-Liouville operator on star graphs, preprint.
[18] E. Korotyaev and I. Lobanov, Zigzag periodic nanotube in magnetic field, http://arxiv.org/list/math.SP/0604007, (2006).
[19] E. Korotyaev and I. Lobanov, Schr‥odinger operators on zigzag nanotubes, Ann. Henri. Poincar′e., 8, (2007) 1151-1176.
[20] M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today 10(12), 2027 (2007).
[21] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkh‥auser Ver- lag, Basel, (1993).
[22] P. Kuchment, Graph models for waves in thin structure, Waves in Random Media, Waves in Random Media, 12, (2002) R1-R24.
[23] P. Kuchment, On some spectral problems of mathematical physics, Pan-American Advanced Studies Institute (PASI) on Partial Differential Equations, Inverse Prob- lems and Non-Linear Analysis, Universidad de Chile, Santiago, Chile., (2003).
[24] P. Kuchment, Quantum graphs: I. Some basic structures, Waves in Random me- dia, 14, (2004) S107-S128.
[25] P. Kuchment, Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38, (2005) 4887-4900.
[26] P. Kuchment and S. Levendorskii, On the structure of spectra of periodic elliptic operators, Trans. Amer. Math. Soc, 354, (2002) 537-69.
[27] P. Kuchment and O. Post, On the spectra of carbon nano-structures, Comm. Math. Phys., 275, (2007) 805-826.
[28] C.K. Law and V. Pivovarchik, Characteristic functions of quantum graphs, J. Phys. A: Math. Theor., 42, (2009), 11pp.
[29] C.K. Law and E. Yanagida, A solution to an Ambarzumyan problem on trees, J. Kodai Math. J., 35, (2012) 357-372.
[30] P.D. Lax, Functional Analysis, John Wiley and Sons, New York, (2002).
[31] B.J. Levin and Y.I Lyubarskii, Interpolation by entire functions of special classes and related expansions in series of exponents, Izv. Akad. Nauk USSR, 39, (1975)
657-702 (Russian). English translation in: Math. USSR-Izv., 9, (1975) 621-662.
[32] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluvwer Academic Publishers, Dordrecht, (1991).
[33] C.R. Lin, Ambarzumyan problem on trees, Unpublished Master Thesis, National Sun Yat-sen University, Kaohsiung, (2007).
[34] O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems, 26, (2010) 035011.
[35] M. Solomyak, On the spectrum of the Laplacian on regular metric trees, Waves in Random media, 14, (2004) S155-S171.
[36] V. Pivovarchik, Ambarzumian’s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph, Funct. Anal. Appli., 39, (2005) 148-151.
[37] V. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32, No. 4, (2000) 801-819.
[38] V. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a star-shaped graph, Math. Nachr., 280, No. 13-14, (2007) 1595-1619.
[39] V. Pivovarchik and N. Rozhenko, Inverse Sturm-Liouville problem on equilateral regular trees, Operators and Matrices, to appear.
[40] Yu V. Pokornyi and A.V. Borvskikh, Differential equations on networks (geometric graphs), J. Mathematical Sciences, 119, no.6, (2004) 691-718.
[41] Yu V. Pokornyi and V.L. Pryadiev, The qualitative Sturm-Liouville theory on spatial networks, J. Mathematical Sciences, 119, no.6, (2004) 788-835.
[42] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of operators, Academic Press, New York, (1978).
[43] C.F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a d-star graph, J. Math. Anal. Appl., 365, (2010) 742-749.
[44] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, (1980).
[45] V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, In- verse Problems, 21, (2005) 1075-1086.
[46] V. Yurko, Inverse nodal problems for Sturm-Liouville operators on star-type graphs, J. Inv. Ill-Posed Problems, 16, (2008) 715-722.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code