Responsive image
博碩士論文 etd-0730112-155907 詳細資訊
Title page for etd-0730112-155907
論文名稱
Title
磁性奈米粒子結合毛細管電泳檢測生物樣品中兒茶多酚胺的含量
Selective enrichment of catecholamines using iron oxide nanoparticles followed by CE with UV detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-24
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
多巴胺、兒茶多酚胺、萃取、奈米粒子、毛細管電泳
extraction, iron oxide nanoparticles, catecholamine, dopamine, CE
統計
Statistics
本論文已被瀏覽 5663 次,被下載 487
The thesis/dissertation has been browsed 5663 times, has been downloaded 487 times.
中文摘要
在本篇研究中,我們利用Fe3O4 NPs的表面會與鄰苯二酚 (catechol) 官能基形成共價鍵結,對人體中三種兒茶多酚胺分子 (catecholamines) 進行選擇性的濃縮萃取,並結合毛細管電泳進行分離與偵測。三種 catecholamines 分別是 : 多巴胺 (dopamine , DA)、腎上腺素 (adrenaline , E)、正腎上腺素 (noradrenaline , NE)。首先為了得到最佳化的萃取效率,我們先對環境中的 pH 做探討,在 pH = 7.0 的環境下,Fe3O4 NPs會與兒茶多酚胺分子有著良好的靜電吸引力,能夠有效的增加萃取效率以及減少萃取時間。其次,在毛細管管壁上塗覆 1.2 % PDDAC,PDDAC與分析物帶有相同的電荷,靠著靜電排斥力能夠有效的防止分析物吸附在毛細管管壁。最後,在最佳化的條件下。三種 catecholamines 的偵測極限可以降到 8 – 10 nM 。另外在在真實樣品中,尿液以及馬齒牡丹科的葉子,都能藉由PBA monospin 的過濾膜幫忙下,成功的偵測到尿液中以及馬齒牡丹葉子的 DA、NE 的含量。
Abstract
This study examines the use of unmodified magnetite nanoparticles (Fe3O4 NPs) for selective extraction and enrichment of the catecholamines dopamine (DA), noradrenaline (NE), and adrenaline (E), prior to analysis using capillary electrophoresis with UV detection. Coordination between Fe3+ on-the-surface Fe3O4 NPs and the catechol moiety of catecholamines enables Fe3O4 NPs to capture catecholamines from an aqueous solution. We obtained maximum loading of catecholamines on the NP surface by adjusting the pH of the solution to 7.0. In addition, catecholamine loading on the Fe3O4 NPs increased in conjunction with NP concentrations. Ligand exchange found H3PO4 to be efficient in the removal of adsorbed catecholamines on the NP surface. Adding 1.2% poly(diallyldimethylammonium chloride) to the background electrolyte caused efficient separation of the liberated catecholamines with baseline resolution within 20 min. Under optimal extraction and separation conditions, the limit of detections at a signal-to-noise ratio of 3 for E, NE, and DA were 9 nM, 8 nM, and 10 nM, respectively. Significantly, we successfully used the combination of a phenylboronate-containing spin column and the proposed method to determine the concentrations of NE and DA in urine and the content of NE in Portulaca oleracea L. leaves.
目次 Table of Contents
目錄

口試委員會審定書 i
誌謝 ii
摘要 iv
ABSTRACT v
目錄 vii
圖次 ix
表目錄 xi
第一章、 緒論 1
壹、 毛細管電泳 1
一、 毛細管電泳簡介 1
二、 毛細管電泳分離之發展史 1
三、 生物樣品於毛細管電泳之應用 3
四、 毛細管電泳常用之模式 3
五、 減少分析物吸附於毛細管之方法 7
六、 線上預濃縮 ( on-line preconcentration ) 的方法 8
貳、 磁性奈米粒子 12
一、 磁性奈米粒子的磁性簡介 12
二、 超順磁性 13
三、 磁性奈米粒子的製備方法 14
四、 磁性奈米粒子的磁滯曲線 16
五、 磁性奈米粒子在生物醫學上的應用 17
實驗動機 20
參考文獻 21
第二章、 磁性奈米粒子結合毛細管電泳檢測生物樣品中兒茶多酚胺的含量 27
壹、 前言 27
貳、 藥品與方法 31
一、 藥品 31
二、 藥品製備 32
三、 儀器裝置 34
四、 兒茶多酚胺 ( catecholamines ) 的萃取流程 36
五、 尿液及馬齒牡丹科植物葉子的兒茶多酚胺類的萃取流程 36
參、 實驗結果與討論 38
一、 選擇性的探討 38
二、 Fe3O4 表面元素探討 40
三、 毛細管電泳分離參數最佳化條件 41
四、 萃取參數的最佳化條件 45
五、 放大倍率以及萃取效率 50
六、 再現性及定量 52
七、 真實樣品 54
肆、 結論 61
參考文獻 62
圖次

圖 1. 壓力驅動與電滲流驅動分離的差別。 5
圖 2. 微胞電動層析法 (MEKC) 的示意圖。 6
圖 3. 毛細管電泳掃集法 (Sweeping –MEKC) 的示意圖。 10
圖 4. 鐵磁性材料的磁滯曲線示意圖 16
圖 5. 以Fe3O4 為探針來萃取樣品中兒茶多酚類化合物 (catecholamines) 的示意圖 30
圖 6. 兒茶多酚胺類 (catecholamines) 的結構與分子式。 31
圖 7 . 以共沉澱合成法所合成出的四氧化三鐵奈米粒子之 TEM 照影圖。 33
圖 8. 毛細管電泳裝置圖。 35
圖 9. 比較三種苯二酚的同分異構物分別以 (125 μL 12 mg ml-1) Fe3O4 NPs 萃取,並且釋放在10μL 0.1M H3PO4 溶液中。(a)萃取前 (b)萃取後的1mL 1mM 的(A) 鄰苯二酚(catechol),(B) 間苯二酚 (resorcinol) 以及 (C) 對苯二酚 (hydroquinone)。 39
圖 10. Fe3O4 NPs 的 XPS 光譜圖。 40
圖 11. 三種catecholamines在不同 pH 的分離緩衝溶液進行分離,(A) pH = 3.0、(B) pH = 4.0、(C) pH = 5.0、(D) pH = 6.0。 43
圖 12. 分離緩衝溶液中所添加的 PDDAC 濃度對分離三種 catecholamines 的影響。 (A) 0.4 %、(B) 0.8 %、(C) 1.2 % v/v。 44
圖 13. 探討 (A)萃取時溶液的pH值與 (B) Fe3O4 NPs 的體積對三種 catecholamines 萃取效率的影響。 47
圖 14. Fe3O4 NPs 與三種 catecholamines 反應時間對萃取效率的影響。 48
圖 15. H3PO4 濃度對釋放效率的影響。 48
圖 16. 以 0.1 M H3PO4 當作釋放試劑與 catecholamines-adsorbed Fe3O4 NPs 反應之時間探討。 49
圖 17. 以不同種的的強酸做為釋放試劑進行釋放。 49
圖 18. 在最佳化條件下分離三種catecholamine,並比較 (A) 萃取前以及 (B) 萃取後的差別。 51
圖 19. 尿液樣品中三種 catecholamines 的分析 56
圖 20. 分析馬齒牡丹科植物 (Portulaca oleracea L.) 葉子中所含的 catecholamines 的含量. 59
圖 21. 以PBA monospin 與 Fe3O4 NPs 萃取後的香椿茶樣品中所測得的茶多酚化合物。 60

表目錄

表 1. 三種兒茶多酚胺之定量分析結果 53
表 2. 尿液樣品及馬齒牡丹樣品中所含的兒茶多酚胺之定量結果 57
參考文獻 References
1 Tiselius, A. “A new apparatus for electrophoretic analysis of colloidal mixtures”Trans. Faraday. Soc. 1937, 33, 524-531.
2 Hjerten, S. “Free zone electrophoresis” Chromatogr. Rev. 1967, 9, 122-219.
3 Virtanen, R. “Zone electrophoresis in a narrow-bore tube employingpotentiometric detection” Acta polytechnic Scand. 1974, 123, 1-67.
4 Mikkers, F. E. P.; Everaerts, F. M.; Verheggen Th, P. E. M. “High-performancezone electrophoresis” J. Chromatogr. 1979, 169, 11-20.
5 Jorgenson, J. W.; Lukacs, K. D. “High-resolution separations based onelectrophoresis and electroosmosis” J. Chromatogr. 1981, 218, 209-216.
6 Jorgenson, J. W.; Lukacs, K. D. Zone Electrophoreisis in Open-Tubular GlassCapillaries” Anal. Chem. 1981, 53, 1298-1302.
7 Jorgenson, J. W.; Lukacs, K. D. “Capillary zone electrophoresis” Science 1983, 222, 266-271.
8 Łobiński, R.; SchaumlOffel, D.; Szpunar, J. “Mass spectrometry in bioinorganicanalytical chemistry” Mass Spectrom. Rev. 2006, 25, 255-289.
9 Gorg, A.; Weiss, W.; Dunn, M. J. “Current two-dimensional electrophoresistechnology for proteomics” Proteomics 2004, 4, 3665-3685.
10 Stults, J. T.; Arnott, D. “Proteomics” Methods Enzymol. 2005, 402, 245-289.
11 Bustamante, J. J.; Garcia, M.; Gonzalez, L.; Garcia, J.; Flores, R.; Aguilar, R. M.;Trevino, A.; Benavides, L.; Martinez, A. O.; Haro, L. S. “Separation of proteins with a molecular mass difference of 2 kDa utilizing preparative double-inverted gradient polyacrylamide gel electrophoresis under nonreducing conditions: application to the isolation of 24 kDa human growth hormone” Electrophoresis 2005, 26, 4389-4395.
12 Krause, F. “Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes” Electrophoresis 2006, 27, 2759-2781.
13 Hye, A.; Lynham, S.; Thambisetty, M.; Causevic, M.;Campbell, J.; Byers, H. L.; Hooper, C.; Rijsdijk, F.;Tabrizi, S. J.; Banner, S.; Shaw, C. E.; Foy, C.; Poppe,M.; Archer, N.; Hamilton, G.; Powell, J.; Brown, R. G.;Sham, P.; Ward, M.; Lovestone, S. “Proteome-based plasma biomarkers for Alzheimer's disease” Brain 2006, 129, 3042-3050.
14 Nilsson, C. L.; Davidsson, P. “New separation tools for comprehensive studies of protein expression by mass spectrometry” Mass Spectrom Rev. 2000, 19, 390-397.
15 Quigley, W. W. C.; Dovichi, N. J. “Capillary electrophoresis for the analysis of biopolymers” Anal. Chem. 2004, 76, 4645-4658.
16 He, Y.; Yeung, E. S. “Rapid determination of protein molecular weight by the Ferguson method and multiplexed capillary electrophoresis” J. Proteome Res. 2002, 1, 273-277.
17 Baryla, N. E.; Lucy, C. A. “Simultaneous separation of cationic and anionic proteins using zwitterionic surfactants in capillary electrophoresis” Anal. Chem. 2000, 72, 2280-2284.
18 Wu, J.; Watson, A. H.; Torres A. R. “Protein analysis using imaged capillary isoelectric focusing” Am. Biotechnol. Lab. 1999, 17, 24-26.
19 Gordon, M. J.; Lee, K. J.; Arias, A. A.; Zare, R. N. “Protocol for resolving protein mixtures in capillary zone electrophoresis” Anal. Chem. 1991, 63, 69-72.
20 Chen, F. T.; Liu, C. M.; Hsieh, Y. Z.; Sternberg, J. C. “Capillary electrophoresis-a new clinical tool” Clin Chem. 1991, 37, 14-19.
21 Chen, F. T. A.; Sternberg, J. C. “Characterization of proteins by capillary electrophoresis in fused-silica columns: review on serum protein analysis and application to immunoassays” Electrophoresis 1994, 15, 13-21.
22 Lehmann R, Liebich H, Grubler G, Voelter W. “Capillary electrophoresis of human serum proteins and apolipoproteins.” Electrophoresis 1995, 16, 998-1001.
23 Green, J. S.; Jorgenson, J. W. “Minimizing adsorption of proteins on fused silica in capillary zone electrophoresis by the addition of alkali metal salts to the buffers” J. Chromatogr. 1989, 478, 63-70.
24 Terabe, S., “Capillary Separation: Micellar Electrokinetic Chromatography.” Annu. Rev. Anal. Chem. 2009, 2, 99-120.
25 Liu, X.; Dahdouh, F.; Salgado, M.; Gomez, F. A. “Recent advances in affinity capillary electrophoresis” J Pharm Sci. 2009, 98, 394-410.
26 Kajirwara, H. “Application of high-performance capillary electrophoresis to the analysis of conformation and interaction of metal-binding proteins” J. Chromatogr. A, 1991, 559, 345-356.
27 Heagaard, N. H. H.; Robey, F. A. “Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from human serum amyloid P component” Anal. Chem. 1992, 64, 2479-2482.
28 Chu, Y.-H.; Whitesides, G. M. “Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins” J. Med. Chem. 1992, 35, 2915-2917.
29 Kuhn, R.; Frei, R.; Christen, M. “Use of capillary affinity electrophoresis for the determination of lectin-sugar interactions” Anal. Biochem. 1994, 218, 131-135.
30 McCormick, R. M. “Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries” Anal. Chem. 1988, 60, 2322-2328.
31 Green, J. S.; Jorgenson, J. W. “Minimizing adsorption of proteins on fused silica in capillary zone electrophoresis by the addition of alkali metal salts to the buffers “ J. Chromatogr. 1989, 478, 63-70.
32 Jensen, P. K.; Paia-Toli , L.; Peden, K. K.;Martinović, S.; Lipton, M. S.; Anderson, G. A.;Toli , N.; Wong, K.-K.; Smith, R. D. “Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures” Electrophoresis 2000, 21, 1372-1380.
33 Cheng, J.; Gao, J.; Lee, C. S. “Dynamic enhancements of sample loading and analyte concentration in capillary isoelectric focusing for proteome studies” J.Proteome Res. 2003, 2, 249-254.
34 Yu, C. J.; Tseng, W. L. “Online concentration and separation of basic proteins using a cationic polyelectrolyte in the presence of reversed electroosmotic flow” Electrophoresis 2006, 27, 3569-3577.
35 Chang, C.-W., and Tseng, W.-L. “Gold Nanoparticles Extraction Followed by Capillary Electrophoresis to Determine the Total, Free, Protein Bound Aminothiols in Plasma”Anal. Chem. 2010, 82, 2696-2702.
36 Suginmoto, T.; Matijevic, E. “Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels” J. Colloid Interface Sci. 1980, 74, 227-243.
37 Qu, S. C.; Yang, H. B.; Ren, D. W.; Kan, S. H.; Zou, G. T.; Li, D. M.; Li, M. H. “Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions” J. Colloid Interface Sci. 1999, 215, 190-192.
38 Kang, Y. S.; Risbud, S.; Rabolt, J. F. “Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles” Chem. Mater. 1996, 8, 2209-2211.
39 Park, S. J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T. “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres” J. Am. Chem. Soc. 2000, 122, 8581-8582.
40 Cheon, J.; Kang, N. J.; Lee, S. M.; Lee, J. H.; Yoon, J. H.; Oh, S. “Shape evolution of single-crystalline iron oxide nanocrystals” J. Am. Chem. Soc. 2004, 126, 1950-1951.
41 Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T., “Medical application of functionalized magnetic nanoparticles.” J. Biosci. Bioeng. 2005, 100, 1-11.


1 Qiao, R.; Yang, C.; Gao, M., “Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications.” J. Mater. Chem. 2009, 19, 6274-6293.
2 Gupta, A. K.; Gupta, M., “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.” Biomaterials 2005, 26, 3995-4021.
3 Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.” Chemical reviews 2008, 108, 2064.
4 Wang, K.Y.; Chuang, S.A.; Lin, P.C.; Huang, L.S.; Chen, S.H.; Ouarda, S.; Pan, W.H.; Lee, P.Y.; Lin, C.-C.; Chen, Y.J., “Multiplexed Immunoassay: Quantitation and Profiling of Serum Biomarkers Using Magnetic Nanoprobes and MALDI-TOF MS.” Ana. Chem. 2008, 80, 6159-6167.
5 Nam, J.-M.; Stoeva, S. I.; Mirkin, C. A., “Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity.” J. Am. Chem. Soc. 2004, 126, 5932-5933.
6 Lin, P. C.; Chen, S. H.; Wang, K. Y.; Chen, M. L.; Adak, A. K.; Hwu, J. R.; Chen, Y. J.; Lin, C. C., “Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application.” Anal Chem 2009, 81, 8774-82.
7 Smith, J. E.; Medley, C. D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W., “Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells.” Anal Chem 2007, 79, 3075-82.
8 Ferreira, J. A.; Daniel-da-Silva, A. L.; Alves, R. M.; Duarte, D.; Vieira, I.; Santos, L. L.; Vitorino, R.; Amado, F., “Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids.” Anal. Chem. 2011, 83, 7035-43.
9 Zhao, X.; Shi, Y.; Cai, Y.; Mou, S., “Cetyltrimethylammonium Bromide-Coated Magnetic Nanoparticles for the Preconcentration of Phenolic Compounds from Environmental Water Samples.” Environ. Sci. Technol. 2008, 42, 1201-1206.
10 Zhang, Q.; Yang, F.; Tang, F.; Zeng, K.; Wu, K.; Cai, Q.; Yao, S., “Ionic liquid-coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples.” Analyst 2010, 135, 2426-2433.
11 Sun, L.; Chen, L.; Sun, X.; Du, X.; Yue, Y.; He, D.; Xu, H.; Zeng, Q.; Wang, H.; Ding, L., “Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC–UV detection.” Chemosphere 2009, 77, 1306-1312.
12 Liu, Y.; Li, H.; Lin, J. M., “Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry.” Talanta 2009, 77, 1037-1042.
13 Shen, H. Y.; Zhu, Y.; Wen, X. E.; Zhuang, Y. M., “Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides.” Anal Bioanal Chem 2007, 387, 2227-37.
14 Zhang, X.; Niu, H.; Pan, Y.; Shi, Y.; Cai, Y., “Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples.” Anal Chem 2010, 82, 2363-71.
15 Chen, W.-Y.; Chen, Y.-C., “MALDI MS Analysis of Oligonucleotides:  Desalting by Functional Magnetite Beads Using Microwave-Assisted Extraction.” Anal Chem 2007, 79, 8061-8066.
16 Hsiao, H.H.; Hsieh, H.Y.; Chou, C.C.; Lin, S.Y.; Wang, A. H. J.; Khoo, K.-H., “Concerted Experimental Approach for Sequential Mapping of Peptides and Phosphopeptides Using C18-Functionalized Magnetic Nanoparticles.” J Proteome Res 2007, 6, 1313-1324.
17 Chen, C. T.; Chen, Y. C., “Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry.” Anal. Chem. 2005, 77, 5912-9.
18 Qiao, L.; Roussel, C.; Wan, J.; Yang, P.; Girault, H. H.; Liu, B., “Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis.” J Proteome Res 2007, 6, 4763-9.
19 Huang, C.; Hu, B., “Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration.” J. Sep. Sci. 2008, 31, 760-767.
20 Suleiman, J. S.; Hu, B.; Peng, H.; Huang, C., “Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES.” Talanta 2009, 77, 1579-1583.
21 Lee, A.; Yang, H. J.; Lim, E. S.; Kim, J.; Kim, Y., “Enrichment of phosphopeptides using bare magnetic particles.” Rapid Commun. Mass Spectrom. 2008, 22, 2561-4.
22 Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G., “Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids.” Langmuir 2001, 17, 7907-7911.
23 Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J., “Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment.” Adv. Mater. 2006, 18, 2426-2431.
24 Amstad, E.; Gehring, A. U.; Fischer, H.; Nagaiyanallur, V. V.; Hahner, G.; Textor, M.; Reimhult, E., “Influence of Electronegative Substituents on the Binding Affinity of Catechol-Derived Anchors to Fe3O4 Nanoparticles.” J. Phys. Chem. C 2010, 115, 683-691.
25 Damier, P.; Hirsch, E. C.; Agid, Y.; Graybiel, A. M., “The substantia nigra of the human brainII. Patterns of loss of dopamine-containing neurons in Parkinson's disease.” Brain 1999, 122, 1437-1448.
26 Swerdlow, N. R.; Koob, G. F., “Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function.” Behav Brain Sci 1987, 10, 197-245.
27 Bravo, E. L.; Tarazi, R. C.; Gifford, R. W.; Stewart, B. H., “Circulating and urinary catecholamines in pheochromocytoma.” N Engl J Med 1979, 301, 682-686.
28 Tsunoda, M., “Recent advances in methods for the analysis of catecholamines and their metabolites.” Anal Bioanal Chem. 2006, 386, 506-514.
29 Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H., “pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli.” PNAS 2011, 108, 2651-2655.
30 Du, M.; Flanigan, V.; Ma, Y., “Simultaneous determination of polyamines and catecholamines in PC‐12 tumor cell extracts by capillary electrophoresis with laser‐induced fluorescence detection.” Electrophoresis 2004, 25, 1496-1502.
31 Park, Y. H.; Zhang, X.; Rubakhin, S. S.; Sweedler, J. V., “Independent Optimization of Capillary Electrophoresis Separation and Native Fluorescence Detection Conditions for Indolamine and Catecholamine Measurements.” Anal. Chem. 1999, 71, 4997-5002.
32 Zhu, R.; Kok, W. T., “Determination of Catecholamines and Related Compounds by Capillary Electrophoresis with Postcolumn Terbium Complexation and Sensitized Luminescence Detection.” Anal. Chem. 1997, 69, 4010-4016.
33 Chang, C.W.; Tseng, W.L., “Gold Nanoparticle Extraction Followed by Capillary Electrophoresis to Determine the Total, Free, and Protein-Bound Aminothiols in Plasma.” Anal. Chem. 2010, 82, 2696-2702.
34 Tseng, W.L.; Chen, S.M.; Hsu, C.Y.; Hsieh, M.-M., “On-line concentration and separation of indolamines, catecholamines, and metanephrines in capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride).” Analytica Chimica Acta 2008, 613, 108-115.
35 Vuorensola, K.; Siren, H.; Kostiainen, R.; Kotiaho, T., “Analysis of catecholamines by capillary electrophoresis and capillary electrophoresis–nanospray mass spectrometry: Use of aqueous and non-aqueous solutions compared with physical parameters.” J. Chromatogr. A. 2002, 979, 179-189.
36 Kallay, N.; Dojnović, Z.; Čop, A., “Surface potential at the hematite–water interface.” J. Colloid Interf. Sci. 2005, 286, 610-614.
37 Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E., “Reactive Nature of Dopamine as a Surface Functionalization Agent in Iron Oxide Nanoparticles.” J. Am. Chem. Soc. 2007, 129, 2482-2487.
38 Faraj, B. A.; Lawson, D. H.; Nixon, D. W.; Murray, D. R.; Camp, V. M.; Ali, F. M.; Black, M.; Stacciarini, W.; Tarcan, Y., “Melanoma detection by enzyme-radioimmunoassay of L-dopa, dopamine, and 3-O-methyldopamine in urine.” Clinical chemistry 1981, 27, 108-112.
39 Hwang, D. S.; Harrington, M. J.; Lu, Q.; Masic, A.; Zeng, H.; Waite, H., “Mussel foot protein-1 (mcfp-1) interaction with titania surfaces.” J. Mater. Chem. 2012.
40 Medic-Saric, M.; Rastija, V.; Bojic, M., “Recent Advances in the Application of High Performance Liquid Chromatography in the Analysis of Polyphenols in Wine and Propolis.” J. Aoac. Int. 2011, 94, 32-42.
41 Issa, Y. M.; Hassoun, M. E. M.; Zayed, A. G., “Application of High Performance Liquid Chromatographic Method For The Determination of Levodopa, Carbidopa, And Entacapone In Tablet Dosage Forms.” J. Liq. Chromatogr. R. T. 2011, 34, 2433-2447.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code