Responsive image
博碩士論文 etd-0730112-162409 詳細資訊
Title page for etd-0730112-162409
論文名稱
Title
應用延伸式閘極場效電晶體偵測水中二氧化碳之研究
Study of Extended-gate FET-based Microsensor for Detecting the Carbon Dioxide in Water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-14
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
癸二酸二辛酯、氣體滲透薄膜、延伸式閘極場效電晶體、二氧化碳微感測器、微機電系統
Carbon dioxide, Extended-gate field effect transistor, MEMS, Gas permeable membrane, Dioctyl sebacate
統計
Statistics
本論文已被瀏覽 5765 次,被下載 0
The thesis/dissertation has been browsed 5765 times, has been downloaded 0 times.
中文摘要
因工業高度發展所產生之二氧化碳,除了造成空氣汙染以及影響人體健康之外,二氧化碳含量增加而造成海水酸化及養殖漁業魚苗存活率下降,因此即時檢測養殖場域中二氧化碳含量將是非常重要之課題。傳統之氣體分析技術,主要可分為光學分析及氣相分析方式兩種,雖具有高感測靈敏度與準確度,但仍有價格昂貴、體積龐大、高消耗功率以及無法即時監控等缺點,將會限制其發展。
本論文運用微機電系統開發延伸式閘極場效電晶體,並結合氣體滲透薄膜製備開發而成具有高感測靈敏度、元件體積小、低製造成本之二氧化碳微型感測器。其中所採用之氣體滲透薄膜材料為癸二酸二辛酯,而主要製程步驟包含四道黃光微影製程及四道薄膜沉積,研究中將探討分析電晶體通道寬長比、與氣體滲透薄膜對二氧化碳微型感測器之特性影響。
本論文所開發之可二氧化碳微型感測器其晶片尺寸大小11 mm×13 mm×0.5 mm,感測面積為1 mm×1 mm。 根據量測之結果顯示在0.25 ~ 50 mM量測範圍下,其最佳化元件特性為感測靈敏度為42.3 mV/dec,感測線性度99.2 %,感測響應時間為100 sec。
Abstract
The large carbon dioxides produced by highly developed industries not only result in serious air pollution and health problems, but also cause ocean acidification and decrease the survival rate of fry in aquaculture. Therefore, to develop a system for real-time detection of the concentration of carbon dioxide in aquaculture has become a very important research issue. Optical analysis and gas-chromatography are the two main methods adopted in conventional gas detection. Although the conventional carbon dioxide detectors presented high sensitivity and accuracy, the high fabrication cost, large dimension, low capability of batch fabrication and without real-time monitoring function will limit their applications.
This thesis utilizes MEMS technology to implement an extended-gate field-effect transistor (EGFET) with an integrated gas permeable membrane for development of a high-sensitivity, small size and low cost carbon dioxide microsensor. The main material of the carbon dioxide gas permeable membrane adopted in this research is dioctyl sebacate. The main processing steps of the proposed microsensor include four photolithography and four thin-film deposition processes. In addition, the influences of the channel width/length ratio of EGFET and the coating of gas permeable membrane on the sensing performances of presented microsensor are also investigated in this study.
The chip size of the implemented carbon dioxide microsensor is 11 mm×13 mm× 0.5 mm and the sensing area is 1 mm×1 mm. As the carbon dioxide concentration varies from 0.25 mM to 50 mM, a very high sensitivity (42.3 mV/ppm) and sensing linearity (99.2%) of the proposed EGFET microsensor can be demonstrated. In addition, the response time of the presented carbon dioxide microsensor is only about 100 seconds, hence it is very suitable for developing a real-time monitoring microsystem.
目次 Table of Contents
摘要.................................................................................................................................I
Abstract..........................................................................................................................II
致謝..............................................................................................................................IV
目錄...............................................................................................................................V
圖目錄........................................................................................................................VII
表目錄...........................................................................................................................X
第一章 緒論............................................................................................................1
1-1 前言.............................................................................................................1
1-2 研究動機.....................................................................................................3
1-3 實驗方法及論文架構...........................................................................5
第二章 氣體感測器簡介與原理介紹.......................................................................6
2-1 氣體感測器簡介……….........................................................................6
2-2 光學型氣體感測器.....................................................................................6
2-3 觸媒燃燒型氣體感測器..............................................................................7
2-4 固態電解質型氣體感測器…......................................................................8
2-5 場效電晶體型氣體感測器…......................................................................9
2-5-1 電化學氣體感測原理介紹…………...............................................14
2-5-2 吸附鍵結模型…………...................................................................14
2-5-3 延伸式閘極場效電晶體工作原理介紹............................................15
第三章 二氧化碳微型感測器之設計與製作………...........................................18
3-1 延伸式閘極感測場效電晶體結構與光罩佈局設計..........................18
3-2 延伸式閘極感測場效電晶體製程整合設計.....................................22
3-2-1 延伸式閘極場效電晶體製作流程………………………..................23
3-2-2 詳細製程步驟與參數…………..………………………..................25
3-3 固態電解質薄膜配置….................................................................32
3-4 氣體滲透薄膜配置….................................................................34
第四章 量測結果與討論......................................................................................37
4-1 延伸式閘極場效電晶體量測分析……….............................................38
4-2 固態電解質薄膜特性量測分析………………..........................................40
4-3 二氧化碳微型感測器特性量測分析……………………..........................44
4-3-1 二氧化碳感測靈敏度及線性度分析……………………..................44
4-3-2 二氧化碳感測遲滯效應分析………….…………………..................51
第五章 結論與未來展望........................................................................................55
5-1 結論...........................................................................................................55
5-2 建議...................................................................................................56
5-2 未來展望...................................................................................................57
參考文獻......................................................................................................................58
附錄..............................................................................................................................62
參考文獻 References
[1] P. Bergveld, “Development of an ion sensitive solid-state sevice for neurophysiological measurement,” IEEE Transactions on Biomedical Engineering, vol. 17, pp. 70-71, 1970.
[2] C.J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors, vol. 10, pp. 61-83, 2010.
[3] J.J. Xu, X.L. Luo and H.Y. Chen, “Analytical aspects of FET-based biosensors,” Frontier in Bioscience, vol. 10, pp. 420-430, 2005.
[4] G. Britain, “Ocean acidification due to increasing atmospheric carbon dioxide,” Royal Society, vol. 12, pp. 4-30, 2005.
[5] C.G. Cooney and B.C. Towe, “Evaluation of microfluidic blood gas sensors that combine microdialysis and optical monitoring,” Medical and Biological Engineering and Computing, vol. 42, pp. 720-724, 2004.
[6] Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin,” Sensors and Actuators B, vol. 100, pp. 347-351, 2004.
[7] H. Segawa, E. Ohnishi, Y. Arai and K. Yoshida, “Sensitivity of fiber-optica carbon dioxide sensors utilizing indicator dye,” Sensors and Actuators B, vol. 94, pp. 276-281, 2003.
[8] X. Ge, Y. Kostov and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosensors and Bioelectronics, vol. 18, pp. 857-865, 2003.
[9] K. Ertekin, I. Klimanat, G. Neurauter and O.S. Wolfbis, “Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements,” Talanta, vol. 59, pp. 261-267, 2003.

[10] V.M. Owen, “Optical fluorescence biosensoring application and diversification - a case history,” Biosensors and Bioelectronics, vol 11, pp. 5-8, 1996.
[11] F. Baldini, A. Falai, A.R.D. Gaudio, D. Landi, A. Lueger, A. Mencaglia, D. Scherr and W. Trettnak, “Continuous monitoring of gastric carbon dioxide with optical fibers,” Sensors and Actuators B, vol. 90, pp. 132-138, 2003.
[12] J.H. Shin, H.J. Lee, C.Y. Kim, B.K. Oh, K.L. Rho and H. Nam, “ISFET-based differential pCO2 sensors employing a low-resistance gas-permeable membrane,” Analytical Chemistry, vol. 68, pp. 3166-3172, 1996.
[13] J.H. Shin, J.S. Lee, S.H. Choi, D.W. Lee, H. Nam and G.S. Cha, “A planar pCO2 sensor with enhanced electrochemical properties,” Analytical Chemistry, vol. 72, pp. 4468-4473, 2000.
[14] H. Nafe, “Potentiometric solid-state CO2 sensor and the role of electronic conductivity of the electrolyte,” Sensors and Actuators B, vol.105, pp. 119-123, 2005.
[15] 曾明漢,觸媒燃燒型氣體感測器,材料與社會,第六十八期, 1992。
[16] P.T. Moseley, J.O.W. Norries and D.E. Willians, “Techniques and mechanisms in gas sensor,” Analytical Chemistry, vol. 58, pp. 950-956, 1990.
[17] P. Bergveld, R.E.G. Hal and J.C.T. Eijkel, “The remarkable similarity between the acid-base properties of ISFETs and proteins and the consequences for the design of ISFET biosensors,” Biosensors and Bioelectronics, vol. 10, pp. 405-414,1995.
[18] C.J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors, vol. 10, pp. 61-83, 2010.
[19] J.V. Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sensor and Actuator, vol. 4, pp. 291-298, 1983.
[20] J. Schoning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors,” Analyst, vol. 127, pp. 1137-1151, 2002.
[21] B. Johan, A. Ivaska and A. Lewenstam, “potentiometric ion sensors,” Chemical Reviews, vol. 108, pp. 329-351, 2008.
[22] D.E. Yate, S. Levine and T.W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society Faraday Transactions, vol. 70, pp. 1807-1818, 1974.
[23] S. Koji, D. Siswanta, O. Takeshi and A. Tsuyoshi, “design and synthesis of a more highly selective ammonium ionophore than nonactin and its application as an ion sensing component for an ion-selective electrode,” Analytical Chemistry, vol. 72, pp. 2200-2205, 2000.
[24] 張志翰,可拋棄式微型氫離子與鉀離子感測器之研究,中山大學電機工程碩士論文,2010。
[25] R.J.J. Funck, W.E. Morf, P. Schulthess, D. Ammann and W. Simon, “Bicarbonate sensitive liquid membrane electrodes based on neutral carriers for hydrogen ions,” Analytical Chemistry, vol. 54, pp. 423-429, 1982.
[26] R. Latorre, J.J. Donovan, B.F. Gisin, W. Koroshetz and D.C. Tosteson, “Ion transport mediated by the valinomycin analog cyclo in lipid bilayer membranes,” Journal of general physiology, vol. 77, Iss 4, pp. 387-417, 1981.
[27] E.J. Fogt, D.F. Untereker, M.S. Norenberg and M.E. Meyerhoff, “Response of ion-selective field effect transistors to carbon dioxide and organic acids,” Analytical Chemistry, vol. 57, pp. 1995-1998, 1985.
[28] M.E. Meyerhoff, Y.M. Fraticelli, J.A. Greenberg, J. Rosen, S.J. Parks and W.N. Opdycke, “Polymer-membrane electrode-based potentiometric sensing of ammonia and carbon dioxide in physsiological fluids,” Clinical Chemistry, vol. 28, pp. 1973-1978, 1982.
[29] R.K. Kobos, S.J. PArks and M.E. Meyerhoff, “Selectivity characteristics of potentiometric carbon dioxide sensors with various gas membrane materials,” Analytical Chemistry, vol. 54, pp. 1976-1980, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.222.189.51
論文開放下載的時間是 校外不公開

Your IP address is 44.222.189.51
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code