Responsive image
博碩士論文 etd-0730112-164508 詳細資訊
Title page for etd-0730112-164508
論文名稱
Title
用於SFBC MIMO-OFDM系統中不具旁帶訊息的功率峰均比降低方法
Peak-to-Average Power Reduction Schemes in SFBC MIMO-OFDM Systems without Side Information
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
旁帶訊息、空頻區塊碼、選擇性映射、正交分頻多工、峰值功率對平均功率比
Orthogonal frequency division multiplexing (OFDM), peak-to-average power ratio (PAPR), selected mapping (SLM), side information (SI), space-frequency block coding (SFBC)
統計
Statistics
本論文已被瀏覽 5647 次,被下載 367
The thesis/dissertation has been browsed 5647 times, has been downloaded 367 times.
中文摘要
選擇性映射(Selected Mapping, SLM)技術已被廣泛運用在正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)系統用來降低峰值功率對平均功率比(Peak-to-Average Power Ratio, PAPR)。雖然SLM方法可有效地降低PAPR,但須要額外傳送旁帶訊息(Side Information, SI)至接收端,進而降低了系統傳輸效率。本論文中,我們提出兩種運用在空頻區塊碼(Space-Frequency Block Coding, SFBC)之多輸入多輸出(Multiple-Input Multiple-Output, MIMO) OFDM系統中降低系統PAPR的方法。第一個方法是在頻域上產生候選訊號而第二個方法則在時域上產生候選訊號。本論文所提出的降低PAPR兩種方法有兩個特性,第一個特性為不破壞SFBC的正交性; 第二個特性為不需額外傳送旁帶訊息至接收端。此外,本論文亦提出一偵測旁帶訊息的方式,模擬結果顯示系統的位元錯誤率(Bit Error Rate, BER)性皆可以貼近於接收端完美已知旁帶訊息的系統BER效能。
Abstract
Selected mapping (SLM) is a well-known technique used to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Although SLM scheme can reduce PAPR efficiently, the side information (SI) must be transmitted to the receiver to indicate the candidate signal that generates the OFDM signal with the lowest PAPR. Robust channel coding schemes are typically adopted to prevent erroneous decoding of SI, leading to the lower bandwidth efficiency. To reduce PAPR efficiently and avoid the bandwidth efficiency loss caused by the transmission of SI, two novel PAPR reduction methods are proposed in SFBC MIMO-OFDM systems with two transmitter antennas that employs the Alamouti coding. The candidate signals are constructed in the frequency-domain and time-domain in the first proposed scheme and the second proposed scheme, respectively. In addition, the orthogonality of the space frequency block code is preserved resulting in the data recovery and the corresponding SI can be easily obtained from the conventional Alamouti detection method for both transmission methods. Simulation results show that the BER performance of a SFBC MIMO-OFDM system with the proposed SI detection algorithm is very close to that of perfect SI detection if the extension factor is larger than 1.3.
目次 Table of Contents
論文審定書 i
序言 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 viii
第一章 導論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 3
第二章 系統介紹 5
2.1 正交分頻多工系統之基本架構 5
2.2 時空編碼及多輸入多輸出 9
2.3 多天線的峰均值功率比 12
第三章 傳統多根天線下降低PAPR的方法16
3.1 傳統的SLM 16
3.2 Ordinary SLM與Simplified SLM 17
3.3 Blind SLM 19
第四章 不具旁訊息傳送的降低PAPR方法20
4.1 頻域上產生候選信號的方法 21
vi
4.2 時域上產生候選信號的方法 24
第五章 接收機的設計 29
5.1 傳送功率的正規化 30
5.2 偵測旁訊息 32
第六章 模擬結果與討論35
6.1 複雜度的比較 35
6.2 PAPR效能的比較 37
6.3 旁訊息的偵測機率 40
6.4 系統的錯誤率 42
第七章 結論 46
參考文獻 47
中英對照表 53
縮寫對照表 57
參考文獻 References
[1] L. J. Cimini, “Analysis and simulation of a mobile radio channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, July. 1985.
[2] W. Y. Zou and Y. Wu, “COFDM: An overview,” IEEE Trans. Broadcast., vol. 41, pp. 1–8, Mar. 1995.
[3] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392–399, Aug. 1995.
[4] H. C. Wu, “Analysis and characterization of intercarrier and interblock interferences for wireless mobile OFDM systems,” IEEE Trans. Broadcast., vol. 52, no. 2, pp. 203–210, June 2006.
[5] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[6] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[7] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[8] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std. 802.16-2004, Oct. 2004.
[9] S. M. Alamouti, “A simple transmit diversity technique for wireless communications, ” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[10] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.
[11] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, June. 2008.
[12] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 3, pp. 333–338, Sep. 1999.
[13] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, Apr. 2001.
[14] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[15] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[16] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161–1166, Mar. 2008.
[17] R. W. Ba ̈uml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056–2057, Oct. 1996.
[18] M. S. Baek, M. J. Kim, Y. H. You, and H. K. Song, “Semi-Blind Channel Estimation and PAR Reduction for MIMO-OFDM System with Multiple Antennas,” IEEE Trans. Broadcast., vol. 50, no. 4, pp. 414–424, Dec. 2004.
[19] R. F. H. fisher and M. Hoch, “Directed selected mapping for peak-to-average power ratio reduction in MIMO OFDM,” Electron. Lett., vol. 42, no. 22, pp. 1289–1290, Oct. 2006.
[20] Z. Latinovic ́ and Y. Bar-Ness, “SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion,” IEEE Commun. Lett., vol. 10, no. 4, pp. 266–268, Apr. 2006.
[21] Y. Ouyang, “Peak-to-average power ratio reduction by cross-antenna translation for SFBC MIMO-OFDM systems,” in Proc. IEEE Vehicle Technology Conf. (VTC 2009), Barcelona, Spain, May 2009, pp. 1–4.
[22] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941–944, Nov. 2009.
[23] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[24] S.-H. Wang, J.-C. Sie, C.-P. Li, and Y.-F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242–1251, Apr. 2011.
[25] C.-P. Li, S.-H. Wang, and K.-H. Tsai, “A low complexity transmitter architecture and its application to PAPR reduction in SFBC MIMO-OFDM systems,” in Proc. IEEE International Conference on Communications (IEEE ICC 2010), Cape Town, South Africa, 23-27 May, 2010.
[26] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power reduction of OFDM signals without side information,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2006–2013, Sep. 2005.
[27] N. Chen and G. T. Zhou, “Peak-to-average power ratio reduction in OFDM with blind selected pilot tone modulation,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2210–2216, Aug. 2006.
[28] S. H. Han, J. M. Cioffi, and J. H. Lee, “On the use of hexagonal constellation for peak-to-average power ratio reduction of an OFDM signal,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 781–786, Mar. 2008.
[29] S. Y. Le Goff, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “A novel selected mapping technique for PAPR reduction in OFDM systems,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1775–1779, Nov. 2008.
[30] S. Y. Le Goff, S. S. Al-Samahi, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “Selected mapping without side information for PAPR reduction in OFDM,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3320–3325, Jul. 2009.
[31] Y. Zhou and T. Jiang, “A novel multi-points square mapping combined with PTS to reduce PAPR of OFDM signals without side information,” IEEE Trans. Broadcast., vol. 55, no. 4, pp. 831–835, Dec. 2009.
[32] C. Li, T. Jiang, Y. Zhou, and H. Li, “A Novel Constellation Reshaping Method for PAPR Reduction of OFDM Signals,“ IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2710–2719, June 2011
[33] J. S. Wang, S. H. Hwang, I. Song, and Y. H. Kim, “Reduction of PAPR without Side Information for Frequency Switched Transmit Diversity-Based MIMO-OFDM Systems,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1116–1118, Dec. 2010.
[34] M. F. Naeiny and F. Marvasti, “Selected mapping algorithm for PAPR reduction of space-frequency coded OFDM systems without side information,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1211–1216, Mar. 2011.
[35] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.
[36] C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May 2001.
[37] C.-P. Li, S.-H. Wang, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code