Responsive image
博碩士論文 etd-0730112-170528 詳細資訊
Title page for etd-0730112-170528
論文名稱
Title
應用注入鎖定振盪器於具能源效率之射頻發射與接收機
Energy-Efficient RF Transmitter and Receiver Using Injection-Locked Oscillators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
功率放大器、極座標調制、注入鎖定、射頻發射機、射頻接收機、能源效率、感知無線電
power amplifiers, Cognitive radio, injection locking, polar modulation, energy efficiency, RF receiver, RF transmitter
統計
Statistics
本論文已被瀏覽 5662 次,被下載 289
The thesis/dissertation has been browsed 5662 times, has been downloaded 289 times.
中文摘要
未來的無線通訊系統將具備更高的資料傳輸速率與能源效率,對於傳統射頻收發機設計而言增添了諸多嚴峻的挑戰。因此本研究致力於發展適合新一代無線通訊應用具能源效率之射頻發射與接收機。本論文首先就注入鎖定振盪器進行理論分析,並說明一種修正型E類功率放大器之設計。基於上述理論,其次介紹本研究所提出之利用注入鎖定振盪器之波包消除重建/極座標發射機與利用雙級注入鎖定振盪器之感知極座標接收機。該發射機結合波包消除重建/極座標調制與注入鎖定的技術以達到高增益、高效率線性放大的目的,並且在實驗上以發射WCDMA和EDGE訊號驗證其效能。此外,在不使用鎖相迴路構成之載波回復電路之情況下,該接收機利用雙級注入鎖定振盪器可從所接收之非固定波包調制訊號解調出其調制波包成分與相位成分,其可行性在實驗上以π/4 DQPSK與QPSK訊號之解調獲得驗證。本研究經由嚴謹的理論分析與實驗驗證了所提出之發射機與接收機可有效地應用於具能源效率之無線通訊系統。
Abstract
Future wireless communication systems will have higher data transmission rates and energy efficiencies than those used today. This fact raises serious challenges to the design of conventional transceiver architectures. This doctoral research develops energy-efficient RF transmitters and receivers for next-generation wireless communications. It begins with a theoretical analysis of the injection locking of oscillators and a modified Class-E power amplifier (PA) for use in developing the proposed transmitter and receiver. Based on the presented theory, a novel envelope elimination and restoration (EER)/polar transmitter using injection-locked oscillators (ILOs) and a novel cognitive polar receiver using two ILO stages are proposed. The EER/polar transmitter combines the approaches of EER/polar modulation and injection locking to achieve linear amplification with a high gain and high efficiency. Experimental results demonstrate its effectiveness for delivering WCDMA and EDGE signals. Additionally, the cognitive polar receiver utilizes two ILO stages to extract the modulation envelope and phase components of a received nonconstant envelope modulation signal without using a phase-locked loop (PLL)-based carrier recovery circuit. Experiments are conducted to verify the feasibility of the novel architecture by performing π/4 DQPSK and QPSK demodulation. Rigorous theoretical analysis and experimental verification prove that both the proposed transmitter and the receiver are effective for energy-efficient wireless communications.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Transmitter and Receiver Architectures 2
1.2.1 Direct-Conversion Transceiver 2
1.2.2 Energy-Efficient Transmitter Using Injection Locking 4
1.2.3 Energy-Efficient Receiver Using Injection Locking 6
1.3 Dissertation Objectives and Organization 8
2 Analysis of an Oscillator under Injection and a Modified Class-E Power Amplifier 10
2.1 Introduction 10
2.2 Injection Locking of Oscillators 11
2.2.1 Generalized Locking Equation 11
2.2.2 Discrete-Time Domain Approach 14
2.2.3 Effective Lock-In Time 15
2.3 Modified Class-E Power Amplifiers 17
2.3.1 Design Theory 17
2.3.2 Results and Discussions 21
2.4 Summary 26
3 EER/Polar Transmitters Using Injection-Locked Oscillators 28
3.1 Introduction 28
3.2 System Analysis 29
3.2.1 Transmitter Architecture 30
3.2.2 Separation of Envelope and Phase Signals 30
3.2.3 Recombination of Envelope and Phase Signals 33
3.3 System Front-End Module Implementation 35
3.3.1 Class-E Power Amplifier 35
3.3.2 Envelope Amplifier 38
3.3.3 Injection-Locked Oscillator 39
3.4 System Measurements 41
3.4.1 WCDMA 44
3.4.2 EDGE 49
3.5 Summary 54
4 Cognitive Polar Receiver Using Two Injection-Locked Oscillator Stages 56
4.1 Introduction 56
4.2 Receiver Architecture and Operating Principles 57
4.2.1 System Overview and Operation 57
4.2.2 Spectrum Sensing 60
4.2.3 Polar Demodulation 62
4.3 Simulated and Experimental Results 64
4.4 Summary 72
5 Conclusions 75
Bibliography 77
參考文獻 References
[1] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, “The global footprint of mobile communications: the ecological and economic perspective,” IEEE Commun. Mag., vol. 49, no. 8, pp. 55–62, Aug. 2011.
[2] W. Tuttlebee, S. Fletcher, D. Lister, T. O’Farrell, J. Thompson. (2010, September). Saving the planet – the rationale, realities and research of green radio. J. the Inst. of Telecommun. Pro. [Online]. Vol. 4, Part 3, pp. 9–20. Available: http://www.theitp.org/Journal/sep_10_pdfs/vol4_p3_8- 20.pdf.
[3] W. Cheng, H. Zhang, L. Zhao, and Y. Li, “Energy Efficient Spectrum Allocation for Green Radio in Two-Tier Cellular Networks,” in Proc. Global Telecommun. Conf., Miami, FL, 2010, pp. 1–5.
[4] M. Gruber, O. Blume, D. Ferling, D. Zeller, M. A. Imran, and E. C. Strinati, “Earth – energy aware radio and network technologies,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, Sept. 2009, pp. 1–5.
[5] G. Auer, I. Godor, L. Hevizi, M. A. Imran, J. Malmodin, P. Fazekas, G. Biczok, H. Holtkamp, D. Zeller, O. Blume, and R. Tafazolli, “Enablers for energy efficient wireless networks,” in Proc. Veh. Technol. Conf., Ottawa, ON, Sept. 2010, pp. 1–5.
[6] O. Blume, D. Zeller, and U. Barth, “Approaches to energy efficient wireless access networks,” in 2010 IEEE Commun., Control and Signal Processing Symp. Dig., pp. 1–5.
[7] G. P. Fettweis and E. Zimmermann, “ICT energy consumption – trends and challenges,” in Proc. 11th Int. Wireless Personal Multimedia Communications Symp., Lapland, Finland, Sep. 2008.
[8] S. McLaughlin, P. M. Grant, J. S. Thompson, H. Haas, D. I. Laurenson, C. Khirallah, Y. Hou, and R. Wang, “Techniques for improving cellular radio base station energy efficiency,” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 10–17, Oct. 2011.
[9] T. Chen, Y. Yang, H. Zhang, H. Kim, and K. Horneman, “Network energy saving technologies for green wireless access networks,” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 30–38, Oct. 2011.
[10] B. Razavi, RF microelectronics, Prentice Hall, 1998.
[11] Q. Gu, RF system design of transceivers for wireless communications, New York, NY: Springer, 2005.
[12] L. M. Correia, D. Zeller, O Blume, D. Ferling, Y. Jading, I. Godor, G. Auer, and L. Van der Perre, “Challenges and enabling technologies for energy aware mobile radio networks,” IEEE Commun. Mag., vol. 48, no. 11, pp. 66–72, Nov. 2010.
[13] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske, “How much energy is needed to run a wireless network?,” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 40–49, Oct. 2011.
[14] H. Holtkamp, G. Auer, and H. Haas, “On minimizing base station power consumption,” in Proc. Veh. Technol. Conf., San Francisco, CA, Sept. 2011, pp. 1–5.
[15] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[16] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwood, MA: Artech House, 2006.
[17] F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 814–826, Mar. 2002.
[18] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp .803–806, Jul. 1952.
[19] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, “L-band transmitter using Kahn EER technique,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2220–2225, Dec. 1998.
[20] D. Rudolph, “Kahn EER technique with single-carrier digital modulations,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 548–552, Feb. 2003.
[21] A. Diet, M. Villegas, and G. Baudoin, “EER architecture specifications for OFDM transmitter using a Class E amplifier,” IEEE Microw. and Wireless Compon. Lett., vol. 14, no. 8, pp. 389–391, Aug. 2004.
[22] N. Wang, X. Peng, V. Yousefzadeh, D. Maksimovic, S. Pajic, and Z. Popovic, “Linearity of X-band class-E power amplifiers in EER operation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1096–1102, Mar. 2005.
[23] D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Commun., vol. 22, no. 12, pp. 1942–1945, Dec. 1974.
[24] F. J. Casadevall and A. Valdorinos, “Performance analysis of QAM modulations applied to the LINC transmitter,” IEEE Trans. Veh. Technol., vol. 42, pp. 399-406, Nov. 1993.
[25] E. McCune and W. Sander, “EDGE transmitter alternative using nonlinear polar modulation,” in Proc. Int. Symp. Circuits Syst., vol. 3, pp. 594–597, May 2003.
[26] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, Dec. 2004.
[27] P. Reynaert and M. S. J. Steyaert, “A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598–2608, Dec. 2005.
[28] J. N. Kitchen, I. Deligoz, S. Kiaei, and B. Bakkaloglu, “Polar SiGe class E and F amplifiers using switch-mode supply modulation,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 845–856, May 2007.
[29] H.-S. Yang, J.-H. Chen, and Y.-J. E. Chen, “A polar transmitter using interleaving pulse modulation for multimode handsets,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 2083–2090, Aug. 2011.
[30] W. H. Doherty, “A New high efficiency power amplifier for modulated waves,” in Proc. IRE, vol. 24, no. 9, pp. 1163–1182, Sep. 1936.
[31] F. H. Raab, “Efficiency of Doherty RF power-amplifier systems,” IEEE Trans. Broadcast., vol. BC-33, no. 3, pp. 77–83, Sep. 1987.
[32] I. Kim, J. Moon, S. Jee, and B. Kim, “Optimized design of a highly efficient three-stage Doherty PA using gate adaptation,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2562–2574, Oct. 2010.
[33] G. Hanington, P. Chen, P. M. Asbeck, and L. E. Larson, “High efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1471–1476, Aug. 1999.
[34] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, “High efficiency CDMA power amplifier using dynamic envelope tracking technique,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 873–976.
[35] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1244–1255, Apr. 2005.
[36] J. Choi, D. Kim, D. Kang, and B. Kim, “A polar transmitter with CMOS programmable hysteretic-controlled hybrid switching supply modulator for multistandard applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1675–1686, Jul. 2009.
[37] Y. Li, J. Lopez, P.-H. Wu, W. Hu, R. Wu, and D. Y. C. Lie, “A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2525–2536, Oct. 2011.
[38] M. Hassan, L. E. Larson, V. W. Leung, D. F. Kimball, and P. M. Asbeck, “A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1321–1330, May 2011.
[39] J. P. Costas, “Synchronous communications,” Proc. IRE, vol. 47, pp. 2058–2068, 1959.
[40] B. Van der pol, “Forced oscillations in a circuit with nonlinear resistance,” Phil. Msg., vol. 3, pp. 65–80, Jan. 1927.
[41] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[42] R. D. Huntoon and A. Weiss, “Synchronization of oscillators,” Proc. IRE, vol. 35, no. 12, pp. 1415–1423, Dec. 1947.
[43] R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microw. Theory Tech., vol. MTT-10, no. 4, pp. 228–235, Jul. 1962.
[44] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965.
[45] E. F. Calandra and A. M. Sommariva, “Stability analysis of injection-locked oscillators in their fundamental mode of operation,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 11, pp. 1137–1143, Nov. 1981.
[46] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[47] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: Generalized Adler’s equation and geometrical interpretation,” in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, 2006, pp. 737–740.
[48] C.-J. Li, F.-K.Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[49] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973.
[50] H. L. Stover and R. C. Shaw, “Injection-locked oscillators as amplifiers for angle-modulated signals,” in 1966 IEEE G-MTT Int. Symp. Dig., pp. 60–66.
[51] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[52] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection-locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845–851, July 2002.
[53] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, Sep. 2004.
[54] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sep. 2007.
[55] C. K. Campbell, “FM demodulation at UHF frequencies using an injection-locked SAW oscillator,” IEEE Trans. Sonics and Ultrasonics, vol. 29, no. 6, pp. 310–315, Nov. 1982.
[56] E. Main and D. Coffing, “FM demodulation using an injection-locked oscillator,” in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 135–138.
[57] E. Main and D. Coffing, “An FSK demodulator for bluetooth applications having no external components,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 6, pp. 373–378, June 2002.
[58] F. Ramírez, V. A. Araña, and A. Suárez, “Frequency demodulator using an injection-locked oscillator: analysis and design,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 1, pp. 43–45, Jan. 2008.
[59] S.-H. Wen, C.-S. Wang, and C.-K. Wang, “A low power 20 GHz 1.5 Gb/s CMOS injection-pulling FSK modulator and frequency discriminator for 60GHz links,” in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, 2008, pp. 483–486.
[60] J. M. Lopez-Villegas, N. Vidal, and J. G. Macias, “FSK coherent demodulation using second-harmonic injection locked oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 578–580, Sep. 2009.
[61] H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “10- and 39-GHz-band InP/InGaAs direct optical injection-locked oscillator ICs for optoelectronic clock recovery circuits,” in 2002 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1699–1702.
[62] Y. Tajima, “GaAs FET applications for injection-locked oscillators and self-oscillating mixers,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 7, pp. 629–632, July 1979.
[63] J. M. Lopez-Villegas, J. G. Macias, J. A. Osorio, J. Cabanillas, J. J. Sieiro, J. Samitier, and N. Vidal, “Continuous phase shift of sinusoidal signals using injection locked oscillators,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 312–314, May 2005.
[64] J. Pandey and B. P. Otis, “A sub-100W MICS/ISM band transmitter based on injection-locking and frequency multiplication,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1049–1058, May 2011.
[65] Y.-S. Jeon, H.-S. Yang, and S. Nam, “A novel high-efficiency linear transmitter using injection-locked pulsed oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 214–216, Apr. 2005.
[66] Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, “An ultra-low-power injection locked transmitter for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1740–1748, Aug. 2006.
[67] S. Diao, Y. Zheng, Y. Gao, S.-J. Cheng, X. Yuan, M. Je, and C.-H. Heng, “A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 120–130, Jan. 2012.
[68] J. Bae, L. Yan, and H.-J. Yoo, “A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 928–937, Apr. 2011.
[69] J. M. Lopez-Villegas and J. J. S. Cordoba, “BPSK to ASK signal conversion using injection-locked oscillators – part I: theory,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3757–3766, Dec. 2005.
[70] J. M. Lopez-Villegas, J. G. Macias-Montero, J. A. Osorio, J. Cabanillas, N. Vidal, and J. Samitier, “BPSK to ASK signal conversion using injection-locked oscillators – part II: experiment,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 226–234, Jan. 2006.
[71] Q. Zhu and Y. Xu, “A 228 μW 750 MHz BPSK demodulator based on injection locking,” IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 416–423, Feb. 2011.
[72] H. Yan, J. G. Macias-Montero, A. Akhnoukh, L. C. N. de Vreede, J. R. Long, and J. N. Burghartz, “An ultra-low-power BPSK receiver and demodulator based on injection-locked oscillators,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1339–1349, May 2011.
[73] K.-C. Tsai and P. P. Gray, “A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 962–970, Jul. 1999.
[74] H.-S. Oh, T. Song, E. Yoon, and C.-K. Kim, “A power-efficient injection- locked class-E power amplifier for wireless sensor network,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 173–175, Apr. 2006.
[75] J.-S. Paek and S. Hong, “A 29 dBm 70.7% PAE injection-locked CMOS power amplifier for PWM digitized polar transmitter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 637–639, Nov. 2010.
[76] G. D. Ewing, The class E/F family of harmonic-tuned switching power amplifiers, Ph.D. dissertation, Oregon State University, 1964.
[77] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 168-176, Jun. 1975.
[78] F. H. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725–735, Dec. 1977.
[79] M. Kazimierczuk and K. Puczko, “Exact analysis of class E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits Syst., vol. 34, no. 2, pp. 149-159, Feb. 1987.
[80] R. E. Zulinski and J. K. Steadman, “Class E power amplifiers and frequency multipliers with finite DC-feed inductance,” IEEE Trans. Circuits Syst., vol. 34, no. 9, pp. 1074-1087, Sep. 1987.
[81] C. H. Li and Y. O. Yam, “Maximum frequency and optimum performance of Class E power amplifiers,” IEE Proc. Circuits, Devices, Syst., vol. 141, no. 3, pp. 174-184, Jun. 1994.
[82] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, “Analysis and design of a generalized Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 36, no. 8, pp. 1086-1079, Aug. 1989.
[83] P. Alinikula, K. Choi, and S. I. Long, “Design of Class E power amplifier with nonlinear parasitic output capacitance,” IEEE Trans. Circuits Syst. II, vol. 46, no. 2, pp. 114–119, Feb. 1999.
[84] A. Grebennikov and N. O. Sokal, Switchmode RF power amplifiers, Oxford, UK: Newnes, 2007.
[85] J.-K. Jau, Y.-A. Chen, T.-S. Horng, and J.-Y. Li, “Envelope following-based RF transmitters using switching-mode power amplifiers,” IEEE Microw. Wirel. Compon. Lett., vol.16, no. 8, pp. 476-478, Aug. 2006.
[86] D. Y. C. Lie, P. Lee, J. D. Popp, J. F. Rowland, H. H, Ng, and A. H. Yang, “The limitations in applying analytic design equations for optimal Class E RF power amplifiers design,” in IEEE VLSI-TSA-DAT Symp. Dig., 2005, pp. 161-164.
[87] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990, ch. 6.
[88] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: SIAM, 1998.
[89] N. Lanka, S. Patnaik, and R. Harjani, “Understanding the transient behavior of injection locked LC oscillators,” in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, 2007, pp. 667–670.
[90] FPD3000 TOM3 and TOM2 Models Modeling Report, Filtronic Inc., UK, 2005.
[91] R. Negra and W. Bachtold, “Lumped-element load-network design for Class-E power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2684-2690, Jun. 2006.
[92] A. J. Wilkinson and J. K. A. Everard, “Transmission-line load-network topology for Class-E power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1202-1210, Jun. 2001.
[93] J.-K. Jau, Y.-A. Chen, S.-C. Hsiao, T.-S. Horng, and J.-Y. Li, “Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 789-792.
[94] C.-J. Li, T.-S. Horng, J.-K. Jau, and J.-Y. Li, “System design issues in a HQPM-based transmitter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 77-80.
[95] C.-J. Li, C.-T. Chen, T.-S. Horng, J.-K. Jau, and J.-Y. Li, “High average-efficiency multimode RF transmitter using a hybrid quadrature polar modulator,” IEEE Trans. Circuits Syst. II, vol. 55, no. 3, pp. 249-253, Mar. 2008.
[96] C.-T. Chen, C.J-. Li, T.-S. Horng, J.-K. Jau, and J.-Y. Li, “Design and linearization of Class-E power amplifier for non-constant envelope modulation,” in IEEE Radio-Freq. Integr. Circuits Symp. Dig., 2008, pp. 145-148.
[97] C.-T. Chen, C.-J. Li, T.-S. Horng, J.-K. Jau, and J.-Y. Li, “Design and linearization of Class-E power amplifier for non-constant envelope modulation,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 957–964, Apr. 2009.
[98] F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. C. Lie, P. M. Asbeck, and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4086–4099, Dec. 2006.
[99] I. Kim, Y. Y. Woo, J. Kim, J. Moon, J. Kim, and B. Kim, “High-efficiency hybrid EER transmitter using optimized power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2582–2593, Nov. 2008.
[100] D. Su and W. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2252–2258, Dec. 1998.
[101] T. Sowlati, Y. Greshishchev, and C. A. T. Salama, “Phase-correcting feedback system for Class E power amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 4, pp. 544–550, Apr. 1997.
[102] C.-T. Chen, C.-H. Hsiao, T.-S. Horng, K.-C. Peng, and C.-J. Li, “Cognitive polar receiver using two injection-locked oscillator stages,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3484–3493, Dec. 2011.
[103] Y. Li, J. Lopez, D.Y.C. Lie, K. Chen, S. Wu, T.-Y. Yang, and G.-K. Ma, “Circuits and system design of RF polar transmitters using envelope-tracking and SiGe power amplifiers for mobile WiMAX,” IEEE Trans. Circuits Syst. I, vol. 58, no. 5, pp. 893–901, May 2011.
[104] C. D. Presti, F. Carrara, A. Scuderi, P. M. Asbeck, and G. Palmisano, “A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1883–1896, Jul. 2009.
[105] M. A. Tarar and Z. Chen, “A direct down-conversion receiver for coherent extraction of digital baseband signals using the injection locked oscillators,” in Proc. IEEE Radio and Wireless Symposium, Orlando FL, USA, Jan 2008.
[106] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code