Responsive image
博碩士論文 etd-0730112-180237 詳細資訊
Title page for etd-0730112-180237
論文名稱
Title
延伸式閘極場效電晶體溶氧微感測器之研究
Study of Extended-gate FET-based Dissolved Oxygen Microsensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-14
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
聚苯乙烯、氣體滲透率、延伸式閘極場效電晶體、微機電系統、溶氧微感測器
permeation rate, polystyrene, MEMS, extended-gate field-effect transistor, dissolved oxygen microsensor
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
水資源是地球十分重要之自然資源之一,近年來由於工業與家庭所排放之汙廢水不斷注入大自然,造成水源污染問題日益嚴重,所以如何即時監控水源品質已是非常重要之研究課題,其中水資源所含氧氣之溶解量(溶氧)即為評估水質的重要指標項目之一。傳統之商用溶氧感測儀器主要可分為化學滴定及光學分析兩種檢測方式,雖然皆具有高感測靈敏度與準確度,但其價格昂貴、體積龐大、無法批次製造及無法即時監控的缺點,將會限制其發展。
本論文利用可批次製造之微機電系統技術開發一種以延伸式閘極場效電晶體為基礎之溶氧微感測器,不同溶氧濃度所產生之不同閘極電位可由鉻/金感測電極所輸出,為了進一步提高元件之感測靈敏度,一種具高氣體滲透率之聚苯乙烯溶氧感測層將被採用。本論文主要製程步驟包含四次黃光微影及四次薄膜沉積製程,研究中將探討分析電晶體通道寬長比、源/汲極幾何圖形與聚苯乙烯溶氧感測層對溶氧微感測器之特性影響。
本論文所開發之延伸式閘極場效電晶體溶氧微感測器晶片尺寸為11 mm×13 mm×0.5 mm,感測區域之面積為1 mm×1 mm。根據量測結果顯示,於2 ~ 6 ppm溶氧濃度量測範圍下,最佳化溶氧微感測器之感測靈敏度與線性度分別高達35.36 mV/ppm與98.83 %,感測響應時間僅為180~200 sec,故適合發展為即時監控之溶氧感測微系統。
Abstract
Water resource is one of the most important natural resources on earth. In recent years, due to the discharges of large industrial and domestic waste-water into the nature, water pollution problem is getting more and more serious and how to monitor the quality of water in real time has become a very important research issue. The dissolved oxygen is one of the critical indexes for evaluating the quality of water. Although the conventional dissolved oxygen detectors presented a high sensitivity and high accuracy, the high cost, large dimension, low capability of batch fabrication and real-time monitoring will limit their applications.
In this thesis, an extended-gate field-effect transistor (EGFET) based dissolved oxygen microsensor is developed utilizing micro-electromechanical system (MEMS) technology. The gate voltages of EGFET under different concentrations of dissolved oxygen can be detected by the Cr/Au sensing electrode. To further enhance the sensitivity of the proposed microsensor, a polystyrene layer with very high permeation rate of the dissolved oxygen gas is adopted and coated on the surface of Cr/Au layer. The main processing steps of the presented microsensor involve four photolithographic and four thin-film deposition processes. The influence of the channel’s width/length ratio, source/drain geometry and polystyrene additional layer on the sensitivity of the EGFET based dissolved oxygen microsensor are investigated in this study.
The chip size of the implemented dissolved oxygen microsensor is 11 mm×13 mm× 0.5 mm and the sensing area is 1 mm×1 mm. As the dissolved oxygen concentration varies from 2 ppm to 6 ppm, a very high sensitivity (35.36 mV/ppm) and sensing linearity (98.83%) of the proposed EGFET microsensor can be demonstrated. In addition, the response time of the presented dissolved oxygen microsensor is only about
III
180~200 seconds, hence it is very suitable for developing a real-time monitoring microsystem.
目次 Table of Contents
摘要.................................................................................................................................I
Abstract..........................................................................................................................II
致謝..............................................................................................................................IV
目錄...............................................................................................................................V
圖目錄........................................................................................................................VII
表目錄...........................................................................................................................X
第一章 緒論.................................................................................1
1-1 前言.............................................................................................................1
1-2 研究動機.....................................................................................................3
1-3 實驗方法及論文架構...............................................................................4
第二章 離子感測器之原理介紹............................................................6
2-1 離子感測器種類........................................................................................6
2-1-1 離子選擇電極..................................................................................6
2-1-2 離子感測場效電晶體....................................................................7
2-1-3 延伸式閘極感測場效電晶體.........................................................9
2-2 延伸式閘極感測場效電晶體原理介紹...................................................11
2-2-1 吸附鍵結模型...................................................................................12
2-2-2 能斯特方程式...................................................................................13
2-2-3 延伸式閘極感測場效電晶體工作原理...........................................14
第三章 溶氧感測器之設計與製作...............................................................18
3-1 延伸式閘極感測場效電晶體結構與光罩佈局設計.................................18
3-2 延伸式閘極感測場效電晶體製程整合設計.............................................23
3-2-1 金屬層之選用.................................................................23
3-2-2 延伸式閘極場效電晶體製作流程.......................................24
VI
3-2-3 詳細製程步驟與參數..........................................................25
3-3 溶氧氣體滲透薄膜配製..........................................................................32
3-3-1 實驗藥品材料與配製方法……...........................................33
3-3 量測系統..................................................................................................34
第四章 結果與討論....................................................................................36
4-1 延伸式閘極場效電晶體量測分析.........................................37
4-1-1 離子佈植對電晶體之影響分析..........................................37
4-1-2 源、汲極佈植圖形與通道寬長比對電晶體之影響分析...........38
4-2 溶氧感測特性量測分析......................................................41
4-2-1 感測靈敏度及線性度分析.................................................42
4-2-2 感測表面具氣體滲透膜之感測靈敏度及線性度分析.............52
第五章 結論與建議....................................................................................63
5-1 結論...........................................................................................................63
5-2 建議.......................................................................................................64
參考文獻......................................................................................................................66
附錄..............................................................................................................................70
參考文獻 References
[1] J.-J. Xu, X.-L. Luo and H.-Y. Chen, “Analytical aspects of FET-based biosensors,” Frontier in Bioscience, vol. 10, pp. 420-430, 2005.
[2] M. Taillefert, G.W. Luther and D.B. Nuzzio, “The application of electrochemical tools for in situ measurements in aquatic systems,” Electroanalysis, vol. 12, pp. 401-412, 2000.
[3] K.L. Daly, R.H. Byrne, A.G. Dickson, S.M. Gallager, M.J. Perry and M.K. Tivey, “Chemical and biological sensors for time-series research: current status and new directions,” Marine Technology Society Journal, vol. 38, pp. 121-143, 2004.
[4] D.R. Lide, Handbook of Chemistry and Physics, CRC, 76th Edition, 1995~1996.
[5] M.L. Hitohmam, Measurement of Dissolved Oxygen, John Wiley&Sons, Inc., New York, 1978.
[6] X. Na, W. Niu, H. Li and J. Xie, “A novel dissolved oxygen sensor based on MISFET structure with Pt–LaF3 mixture film,” Sensors and Actuators B, vol. 87, pp. 222-225, 2002.
[7] J. Hendrikse, W. Olthuis and P. Bergveld, “The EMOSFET as a potentiometric transducer in an oxygen sensor,” Sensors and Actuators B, vol. 47, pp. 1-8, 1998.
[8] J. Hendrikse, W. Olthuis and P. Bergveld, “A novel potentiometric oxygen sensor based on the EMOSFET,” Sensors and Actuators B, vol. 87, pp. 222-225, 2002.
[9] D.T.V. Anh, W. Olthuis and P. Bergveld, “Electrochemical characterization of Prussian Blue by using EMOSFET,” Sensors and Actuators B, vol. 78, pp. 310-314, 2001.
[10] M.-M. Ramón, S. Juan, L.-S. Josefa, G.-B. Eduardo, G. Luis, I. Javier, Isabel A. Silvia and Alvarez, “New potentiomentric dissolved oxygen sensors in thick film technology,” Sensors and Actuators B, vol. 101, pp. 295-301, 2004.
[11] L.H. Ramsey, “Analysis of Gas in Biological Fluid by Gas chromatography,” Science, vol. 129, pp. 900-905, 1959.
[12] E.W. Moore and D.W. Wilson, “The Determination of Sodium in Body Fluids by the Glass Electrode,” Journal of Clinical Microbiology, vol. 42, pp. 293-298, 1963.
[13] M.S. Frant, “History of early commercialization of ion-selective electrodes,” Analyst, vol. 199, pp. 2293-2301, 1994.
[14] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Transactions on Bio-Medical Engineering, pp. 70-71, 1970.
[15] P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B, vol. 88, pp. 1-20, 2003.
[16] C.J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors and Actuators B, vol.10, pp. 61-83, 2010.
[17] C.-H. Lee, H.-I. Seo, Y.-C. Lee, B.-W. Cho, H. Jeong and B.-K. Sohn, “All solid type ISFET glucose sensor with fast response and high sensitivity characteristics,” Sensors and Actuators B, vol. 64, pp. 37-41, 2000.
[18] T.C.W. Yeow, M.R. Haskard, D.E. Mulcahy, H.I. Seo and D.H. Kwon, “A very large integrated pH-ISFET sensor array chip compatible with standard CMOS process,” Sensors and Actuators B, vol. 44, pp. 434-440, 1997.
[19] W.-Y. Chung, C.-H. Yang, D.G. Pijanowska, P.B. Grabiec and W. Torbicz, “ISFET performance enhancement by using the improved circuit techniques,” Sensors and Actuators B, vol. 113, pp. 555-562, 2006.
[20] B. Pala´n, F.V. Santos, J.M. Karam, B. Courtois and M. Husa´k, “New ISFET sensor interface circuit for biomedical applications,” Sensors and Actuators B, vol. 57, pp. 63-68, 1999.
[21] J.V.D. Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators B, vol. 4, pp. 291-298, 1983.
[22] J. Schoning and A. Poghossian, “Recent Advances in Biologically Sensitive Field-effect Transistors,” Analyst, vol. 127, pp. 1137-1151, 2002.
[23] L.-T. Yina, Y.-T. Linb, Y.-C. Leua and C.-Y. Hua, “Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors,” Sensors and Actuators B, vol. 148, pp. 207-213, 2010.
[24] J.-C. Chen, J.-C. Chou, T.-P. Sun and S.-K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sensors and Actuators B, vol. 91, pp. 180-186, 2003.
[25] M. Kamahori, Y. Ishige and M. Shimoda, “A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor,” Biosensors and Bioelectronics, vol. 22, pp. 3080–3085, 2007.
[26] D.E. Yate, S. Levine and T.W. Healy, “Site-binding mode of the electrical double aayer at the oxide/water interface,” Journal of the Chemical Society Faraday
Transactions, vol. 70, pp. 1807-1818, 1974.
[27] 黃義佑,含有積體化微固態參考電極及背接式結構的單晶片酸鹼值感測器,清華大學電機工程博士論文, 2002.
[28] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sensors and Actuators B, vol. 94, pp. 53-64, 2003.
[29] 龍威宇,可拋棄式微型鈣離子與鈉離子感測器之研究,中山大學電機工程碩士論文,2010.
[30] T.C. Chou, K.M. Ng and S.H. Wang, “Gold-solid polymer electrolyte sensor for detecting dissolved oxygen in Water,” Sensors and Actuators B, vol. 66, pp. 184-186, 2000.
[31] W. Glasspool and J. Atkinson, “A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane,” Sensors and Actuators B, vol. 48, pp. 308-317, 1998.
[32] M. Sosna, G. Denuault, R.W. Pascal, R.D. Prien and M. Mowlemb, “Development of a reliable microelectrode dissolved oxygen sensor,” Sensors and Actuators B, vol. 123, pp. 344-351, 2007.
[33] A.C. Puleo, N. Murugandam and D.R. Paul, “Gas sorption and transport in substituted polystyrene,” Journal of Polymer Science, vol. 27, pp. 2385-2406, 1989.
[34] J.K. Atkinson and W.V. Glasspool, “An evaluation of the characteristics of membrane materials suitable for the batch fabrication of dissolved oxygen sensors,” Microelectronics Internationa, vol. 20, pp. 32-40, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.253.170
論文開放下載的時間是 校外不公開

Your IP address is 52.14.253.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code